Biomarkers To Improve Safety/Efficacy Prediction

Pediatric Medical Countermeasures

Donna L. Mendrick, Ph.D.
Director, Division of Systems Biology
February 16, 2012

Views expressed in this presentation are those of the presenter and not necessarily those of the U.S. Food and Drug Administration
Outline

• Improve Species Extrapolation
 – Genomics

• Aging and Drug Sensitivity
 – Genomics and Metabolomics
Hepatotoxicity

• Testing in animals identifies many toxic drugs but not a complete safety net
 – ~50% of drugs that cause human hepatotoxicity were not detected in preclinical animal testing

• ~1% of hospitalized patients develop drug-induced liver injury (DILI)

• Liver injury in humans linked to ~1000 drugs

Global Similarities in Gene Response Upon *In Vivo* Exposure

Each column = 1 gene

Prediction of Hepatotoxicity

• Genomics can classify compounds accurately with *in vitro* and *in vivo* approaches

• Very different biomarkers

Martin et al., Pharmacogenomics 7:1003-1016, 2006
Aging and Drug Sensitivity

Genomics

Metabolomics
Principal Components Analysis

Normal F344 rats

Differentially expressed genes (3,770)

= 1 animal

Male

Female

Innovative Science to Improve Public Health
Age Susceptibility to Gentamicin

6 days of treatment
50 mg/kg/day
Small subset of large study

<table>
<thead>
<tr>
<th>Biomarkers of Gentamicin</th>
<th>Age of Rats</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25 Days</td>
</tr>
<tr>
<td>Histology</td>
<td>-</td>
</tr>
<tr>
<td>Serum Creatinine</td>
<td>-</td>
</tr>
<tr>
<td>BUN</td>
<td>-</td>
</tr>
</tbody>
</table>
Innovative Science to Improve Public Health

Principal Components Analysis
NMR Spectra

Sprague Dawley Rats
+/- Gentamicin Treatment

Metabolomics Analysis

Age separates them more than treatment
Biomarkers of Gentamicin

<table>
<thead>
<tr>
<th>Age of Rats</th>
<th>25 Days</th>
<th>40 Days</th>
<th>80 Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Histology</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Serum Creatinine</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BUN</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NMR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urinary Glucose*</td>
<td>-</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>Urinary Hippurate**</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
</tr>
</tbody>
</table>

* Potential Biomarker of Nephrotoxicity
** Potential Biomarker of Efficacy
Conclusions

• Genomic profiling (cultured rat hepatocytes, rat liver) can identify hepatotoxic compounds
 – Can improve species extrapolation
 – Biomarkers may be different between *in vitro* and *in vivo*

• Genomics and metabolomics profiling can provide insight into sex- and age-specific differences

• Urinary metabolomic analysis may identify more sensitive biomarkers of injury and efficacy than routine tests
Division of Systems Biology

Jim Fuscoe
Genomics

Rick Beger
Metabolomics