Sickle Cell in Athletes

Douglas B. Gregory MD, FAAP
Lakeview Medical Center
Suffolk, Virginia
Education Objectives

- Review how sickle cell is inherited
- Review sickle cell pathology process
- Review screening and diagnostic tests for sickle cell disease and trait
- Review common symptoms seen in athletes and differentiate them from other processes
- Review management of sickle cell crisis
“Sickle Cell Trait is not a disease”

- Life expectancy is the same between sickle cell trait and unaffected individuals
- Calling it a disease potentially will
 - Affect the ability of 2.5 African Americans from getting life insurance, health insurance, hired
 - Impact the participation/livelihood of 6.7% of NFL players who are sickle cell trait positive
- But there does seem to be a risk for active individuals
 - This was first identified in military recruits
 - 28 times more likely to have an exercise related death (thankfully this is still a small number)
Let’s try to get some perspective

<table>
<thead>
<tr>
<th>Football Fatalities 2000-2008</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>High School</td>
</tr>
<tr>
<td>Direct</td>
</tr>
<tr>
<td>Indirect</td>
</tr>
</tbody>
</table>

- Direct – fatal head and neck injuries incurred during participation
- Indirect – fatal systemic failure as a result of exertion with participation (heat, cardiac, sickle cell)

ANNUAL SURVEY OF FOOTBALL INJURY RESEARCH 1931 – 2008 (NCCSI)

- Participation rates
 - ~ 1,500,000 high/middle school players/year
 - ~ 75,000 collegiate players/year (NCAA, NAIA, NJCAA)
Cause of Non-Traumatic Death
NCAA Football
All Divisions 2000-2009...

Scott Anderson, ATC
Exertional Sickling Deaths in College Football

- 1974 Colo., ran 800 m
- 1985 Ark., ran ¾ mile
- 1986 Miss., ran 1 mile
- 1987 Ind., ran 1200 m
- 1989 Utah, ran ¾ mile
- 1990 NM, ran 800 m
- 1992 Ga., ran 1000 m
- 1995 Ariz., ran 900 m
- 2000 Tenn., ran 800 m
- 2001 Fla., 1 hr. mat drill
- 2004 Ohio, ran ~10 min
- 2005 Mo., 1 hr. field drill
- 2006 Tex., ran 1600 yds
- 2008 One in Fla., one in NC
- 2009 NC, ran 500 yds

Scott Anderson, ATC
More than 70,000 people have sickle cell disease.

Sickle cell disease occurs in 1 in every 500 African American births.

2.5 million people have sickle cell trait.

1 in 12 African Americans has sickle cell trait (8%)
 - 96% of all cases of sickle cell trait

1 in 2000 non-African-Americans has sickle cell trait (0.046%)
 - 4% of all cases of sickle cell trait
Virginia Numbers

- **Sickle Cell Disease**
 - 3700 cases of sickle cell disease
 - 75 babies born every year with sickle cell disease
 - 1 in 325 African-Americans have sickle cell disease
 - (< 1% identified in other ethnic groups)

- **Sickle Cell Trait (Carriers)**
 - >155,000 Virginians are sickle cell trait/carriers
 - 1 in 12 African-Americans
 - 2000 births every year

- **Bottom Line:** there is more sickle cell trait and disease in Virginia than the national average
Where in Virginia?

Sickle Cell Disease in Virginia

- Eastern VA - King's Daughters 49%
- Central VA - VCU 23%
- Northern VA - INOVA Fairfax 19%
- Western VA - UVA and Carilion 9%
How is sickle cell passed from one generation to the next?

- Autosomal Recessive inheritance pattern
How is sickle cell passed from one generation to the next?

- **Autosomal Recessive inheritance pattern**
 - This means that both boys and girls can carry the trait (AS)
 - This means that the trait can run through a family without anyone ever inheriting the disease (SS)
 - This means that someone can inherit other hemoglobin problems along with the sickle cell trait
 - Hemaglobin CS
 - Hemaglobin S beta thalassemia
Is there any good reason to have sickle cell trait?

- Sickle trait is associated with increased survival in areas with endemic malaria (Selective Advantage)
- Sickle cell is “malarial” more than it is racial
 - Sicily 4% carrier rate; 12% of Northern Greeks and Turkey
So what actually is going on with sickle cell disease?

- **Hemoglobin**
 - Protein inside red blood cells that carries oxygen to tissues and carries carbon dioxide away
 - Made of four subunits each able to carry one oxygen
 - 2 alpha
 - 2 beta
 - Sickle Cell is caused by an abnormal Beta chain gene
So what actually is going on with sickle cell disease?

- **Making a hemoglobin molecule**
 - **Grab two alphas and two betas**
 - **Sickle cell disease** – all betas are abnormal “S” subunits
 - Each hemoglobin molecule will have:
 - Two normal Alphas + two abnormal “S” Betas
 - **Sickle cell trait** - % of betas are abnormal “S” subunits
 - Some hemoglobin molecules will have:
 - Two normal Alphas + two normal Betas
 - Two normal Alphas + two abnormal “S” Betas
 - Two normal Alphas + one normal Beta + one abnormal “S” Beta
So what actually is going on with sickle cell disease?

- In low oxygen states
 - The abnormal “S” beta unit warps and allows for cross linking to occur between the abnormal “S” beta units
 - If enough cross linking occurs the red blood cell will become stiff and arc shaped
Sickling Situations

- **Low Oxygen Environments**
 - High altitude situations (over 4000 feet)
 - Airplane flights
 - Cities over 4000 – Boulder, CO; Denver, CO; Bozeman, MT; Colorado Springs, CO; Laramie, WY; Lees-McRae College, Banner Elk, NC
 - Cities close to 4000 – Boone, NC (3400); Missoula, MT (3209)
 - Above 4K feet at rest – 2% of red cells are sickled
Sickling Situations

- Decreased oxygen delivery
 - Poorly functioning lungs
 - Bronchitis, Pneumonia, Common Cold, Asthma
 - Alterations in blood oxygen carrying ability
 - Pre-practice dehydration
 - Hangover
 - Not sufficiently replenishing from day before
 - WBGT > 75 during preceding 24 hours
 - During practice dehydration
 - Environmental heat stress
 - WBGT > 75 at practice time
 - Heat retaining clothing
 - Fever
 - Iron deficiency anemia

- Alterations in blood delivery
 - Organs that have blood redirected away from them during maximal exercise
 - Kidneys, spleen
Sickling Situations

- Increased oxygen usage
- Increase in environmental heat stress
- Sustained high intensity activity above conditioning level
 - In exercise to exhaustion at sea level 1% of total red cells will sickle
- Obesity with poor exercise fitness level
- Inadequate sleep
- Fever
Sickling Situations

- Often a combination of several factors
 (the least important of which is the level of exercise)
 1st or 2nd day of spring training (over weight and un-conditioned)
 + Warmer than expected day
 + “spring cold” with cough and recent fever
 + Repetitive timed runs (5 x 100 yd sprints)
 = sickle cell crisis/hospitalization/acute renal failure
Exertional Sickling Deaths in College Football

- 1974 Colo., ran 800 m
- 1985 Ark., ran ¾ mile
- 1986 Miss., ran 1 mile
- 1987 Ind., ran 1200 m
- 1989 Utah, ran ¾ mile
- 1990 NM, ran 800 m
- 1992 Ga., ran 1000 m
- 1995 Ariz., ran 900 m
- 2000 Tenn., ran 800 m
- 2001 Fla., 1 hr. mat drill
- 2004 Ohio, ran ~ 10 min
- 2005 Mo., 1 hr. field drill
- 2006 Tex., ran 1600 yds
- 2008 One in Fla., one in NC
- 2009 NC, ran 500 yds

Scott Anderson, ATC
So What happens in the body with a sickled red blood cell?

- Normal red blood cells
 - Normal red blood cell (RBC)
- Abnormal, sickled, red blood cells (sickle cells)
 - Sickle cells blocking blood flow
 - Cross-section of sickle cell
 - Sticky sickle cells
 - Abnormal hemoglobin form strands that cause sickle shape
Where does Sickle Cell Trait affect an Athlete?

- Kidney
- Spleen
- Muscles
Where does Sickle Cell Trait affect an Athlete?

- **Kidney**
 - Can affect individual nephrons and cause slow decrease in function over years
 - Can affect cluster of nephrons acutely
 - Kidney infarct
 - Microscopic or gross hematuria
Sickle Cell Crisis in a Kidney

- **Symptoms**
 - Flank pain
 - Not increased or decreased by changing position
 - Not able to palpate tender muscle
 - CVA tenderness to percussion
 - Nausea
 - Blood in urine
Sickle Cell Crisis in a Kidney

Return To Participation

- Wait until gross and microscopic hematuria resolves (visual check and urine dipstick check)
- Make sure kidney lab work is normalized (BUN, Cr)
- Gradual increase in activities over 1 week before allowing full participation
Where does Sickle Cell Trait affect an Athlete?

- **Spleen**
 - Infarct
 - Severe pain in left flank and side
 - Not better or worse with movement
 - Can not feel sore muscle
 - Pain radiates up to left shoulder blade
 - Pain worse with deep breath (splinting)
 - Nausea and Vomiting
 - Associated with left pleural effusion, atelectasis in left lower lobe of lung

- **Back up of blood flow – enlargement**
- **Identified by examination and ultrasound or CT scan**
Sickle Cell in the Spleen
Altitude seems to be the biggest risk for spleen

- 15 cases have occurred during airplane flights
- 24/32 (75%) cases have occurred in white or Mediterranean heritage sickle cell trait individuals

General recommendation – avoid sustained exercise

> 7000 feet
Sickle Cell in the Spleen

- **Return To Participation**
 - Usually self resolving in 10-21 days
 - RTP managed much like splenomegaly associated with mononucleosis
 - Resolution of palpable spleen
 - Normal spleen on ultrasound or CT scan
 - Normal blood work (CBC, Platelets)
 - Gradual increase in activities over 1 week
Where does Sickle Cell Trait affect an Athlete?

- **Muscles**
 - Affects large muscle groups that get used the most in sports – Legs

- **Symptoms**
 - Muscle pain and WEAKNESS
 - Progressive muscle involvement
 - Abs, arms, diaphragm
 - Can occur 2-3 minutes into exercise
Sickle Cell Crisis in the Muscles

- **Muscles**
 - **Mild** – pain and weakness which can recover in a few seconds to minutes
 - **Severe** – muscles can ‘infarct’ and start to die which releases:
 - Muscle enzymes - Rhabdomyolysis
 - Acidosis – cardiac arrhythmias (sudden death)
 - Kidney failure – dying muscles release myoglobin which sludges in kidneys and causes them to fail (delayed death)
Sickle Cell Crisis in the Muscles

- **Return To Participation**
 - Minor spell (mild pain and weakness that self resolves in seconds to minutes)
 - Wait 30 minutes after symptom free
 - Allows time for hydration efforts to get into circulation — HYDRATE
 - Allows time for oxygenation to get throughout the circulation — GIVE OXYGEN
 - After severe spell (rhabdo with kidney failure)
 - Wait for kidney function to return to baseline (BUN, Cr)
 - Wait for muscle enzyme levels to return to baseline
 - Gradual increase in activities over 1-2 weeks
 - Permanently disqualified from returning to participation if severe spell included any of the following:
 - Creatinine > 6.0
 - CPK > 27,000
 - Vision loss or focal neurologic changes with spell (sickling spell in brain or eyes)
How can you tell what caused your athlete to collapse?

<table>
<thead>
<tr>
<th></th>
<th>Sickling Collapse</th>
<th>Cardiac Collapse</th>
<th>Heat Cramp / Collapse</th>
</tr>
</thead>
<tbody>
<tr>
<td>When</td>
<td>Early in practice or after sprints</td>
<td>Anytime</td>
<td>Late in practice</td>
</tr>
<tr>
<td>Warning Signs</td>
<td>No clear prodrome symptoms</td>
<td>No clear prodrome symptoms</td>
<td>Feel tingling/twitching</td>
</tr>
<tr>
<td>Overall Symptoms</td>
<td>Slump to ground with weak / wobbly muscles</td>
<td>Collapses more than slumps</td>
<td>Hobbles off field or falls because of tight muscle</td>
</tr>
<tr>
<td>Pain pattern</td>
<td>Moderate ‘heart attack’ ache / pain in muscles</td>
<td>No pain in muscles</td>
<td>Severe and burning pain</td>
</tr>
<tr>
<td>Muscle pattern</td>
<td>Muscle progressively becoming weaker / flaccid</td>
<td>Muscles flaccid</td>
<td>Muscle contracted tight like a rock</td>
</tr>
<tr>
<td>Alertness</td>
<td>Normal Level of consciousness</td>
<td>Loss of Consciousness or decreased level or seizures</td>
<td>Normal level of consciousness but can progress to decreased level with heat stroke</td>
</tr>
<tr>
<td>Sidelines Care</td>
<td>Pull from participation, Oxygen if available and activate 911 + apply AED if symptoms not immediately better</td>
<td>Activate and initiate ABCD’s of emergency cardiac care</td>
<td>Stretch and massage muscle and administer oral fluids</td>
</tr>
</tbody>
</table>
Treating a Sickle Crisis
NATA consensus statement 2007

- **Sickle Collapse**
 - Treat as a medical emergency
 - Check vital signs
 - Administer oxygen if available
 - Cool athlete if necessary
 - Altered mental status/declining vital signs
 - Call 911; attach an AED; start high flow IV
 - If transferring to ED
 - Notify EMS and receiving hospital that this is a sickle cell situation and expect explosive rhabdo and metabolic complications

- **Sickle Crisis vs. Exertional Heat Illness**
 - respect both and treat urgently
 - Could be combination – leading to more complicated course
Preventing a Sickle Crisis
NATA consensus statement 2007

- Educate athlete of diagnosis, signs and symptoms of sickle crisis common in sports
- Educate coaching staff, strength/conditioning staff and medical staff of signs and symptoms of sickle crisis and what measures to take in an emergency (assume it is sickling first)
Preventing a Sickle Crisis

NATA consensus statement 2007

- Encourage athlete to maintain fitness level
 - Participate in year round strength and conditioning

- Adjust initial preseason/off-season training
 - Build up slowly with paced progressions
 - Longer periods of rest and recovery
 - Exclude from performance tests (mile run, serial sprints)

- Adjust training based on Ambient heat stress, dehydration, asthma, illness, altitude
 - Increased rest cycles; emphasize hydration; hold if running fever or for respiratory symptoms

- Cessation of activity with onset of symptoms (muscle cramping, pain, weakness, inability to ‘catch breath’
How can you prevent or treat a sickle cell crisis if you don’t know which athletes are at risk?

- All of these recommendations are based on the presumption that you know which of your athletes are sickle cell trait carriers

- NATA consensus statement 2007
 - “Efforts to document newborn screening results should be made during the PPE”
 - “In the absence of newborn screening results, institutions should carefully weigh the decision to screen”

- NCAA press release 6/29/09
 - “Following recommendations from NATA and CAP, the NCAA recommends athletics departments confirm Sickle Cell Trait status in all student-athletes, if it is not already known, during their required medical examinations”
Know your at risk athletes

- Pre-Participation Screening
 - Sickle cell test done on all newborns before discharge from hospital
 - Virginia started doing this in 1989
 - records kept at doctor’s office (sometimes) and at state lab in Richmond
 - Mother’s name, mother’s social security number, gender of baby, date of birth, hospital of birth
 - Many individuals don’t know and don’t have access to their lab report
Know your at risk athletes

Basic screening with Hemoglobin Solubility Test (Sickledex)
if positive – follow up with Hemoglobin Electrophoresis
Know your at risk athletes

- Should you test all athletes?
- Should you test all athletes who do not have newborn lab results?
- Should you only test high risk athletes (African-American, Greek, Turkish, Sicilian, Indian)?
 - This may miss up to 4% of all sickle cell trait carriers
Treatments?

- **Thiocyanate**
 - Can reduce sickling in Sickle Cell Anemia patients
 - No studies on SCT
 - Naturally found in veggies (broccoli and cauliflower)
 - High levels can be toxic

- **Bottom line:**
 - Avoid Herbal preparation
 - Eat your veggies
Bottom Line for Sickle Cell Trait in Athletes

- **Know your athletes**
 - Some sort of screening
 - Make sure all staff/coaches know

- **Know how to prevent spells**
 - You and all coaching staff
 - Educate your coaching/strength staff
 - Modify workouts when oxygen delivery is affected (altitude, heat, pre-season, illness)

- **You can not prevent when you do not know!**
Bottom Line for Sickle Cell Trait in Athletes

- Know how to identify a spell and respond to minor and major spells
 - Educate your coaches/strength staff!
- Know when to allow RTP for a spell
 - Kidney, spleen, muscle
- It is much harder to identify and treat a spell if you do not know your athlete’s status!
References

- NATA Consensus Statement: Sickle cell and the athlete, June 2007. www.nata.org