Clinical Background: B Cell Lymphoma

- 55,000 cases diagnosed/year
- Increasing incidence
- Most respond to treatment by many will relapse
- Transplant can cure about 50% of those who relapse who are still responsive to chemotherapy

Acute Lymphoblastic Leukemia

- Standard chemotherapy of adult ALL basically unchanged
- No new drugs have been developed until 2014
- Results are unchanged over 3 decades: 35% disease free survival
- Better understanding of the results based on cytogenetics, molecular genetics and minimal residual disease
Genetically Modified T-cells

- T-cells are part of the immune system that recognizes virus, bacteria and fungus.
- T-cells have receptors on them that recognize foreign tissue antigens (organ transplant).
- Tumors have antigens on surface too.
- Can T-cells be "educated" to recognize tumor antigen?

Virus and Tumor Antigen-Specific T Cells

- Studies in Epstein-Barr Virus and Cytomegalovirus diseases have established the transfer of virus-specific T cells as an effective strategy for restoring selected T-cell responses in immunodeficient patients.
- Can we make tumor specific T-cells to react against the cancer as the immune system does naturally against viruses?

The Chimeric Antigen Receptor (CAR)

- The tumor specific chimeric antigen receptor (CAR) in lenti-viral vector.

Fielding AK et al, Blood, 2007
CD19: An Ideal Target for Immunotherapy

- CD19 has near universal expression on B-cell malignancies.
- Limited normal tissue expression restricted to B cells.
- Off-tumor targeting of B cells is well tolerated.
- Over 9 institutions with open INDs using CD19-specific CAR T cells.
- Remarkable clinical responses observed in a subset of patients in both ALL and CLL.

Chimeric Antigen Receptor (CAR) T Cell Therapy

Advantages of CARs
- Modular design.
- HLA-independent antigen recognition.
- Functional in both CD8+ and CD4+ T cells.
- Significant numbers of tumor specific T cells can be readily generated.
- The potential to generate long-term antitumor immunity.

Challenges
- Single antigen specificity.
- Primarily restricted to extracellular antigens.
- On-target and off-target toxicities.

Phase I Clinical Trial Using First Generation CD19R-CAR Engineered Central Memory T cells

Patient Population and Clinical Design
- Autologous CAR T cells infused on day +2 after auto-HSCT.
- Poor prognosis with transplant.
- Myeloablative conditioning to promote homeostatic expansion.
- Engraft cells as a component of the reconstituted immune system.

NHL1 Patient Summary

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age/Sex</th>
<th>Diagnosis</th>
<th>Disease Status at SCT</th>
<th>Salvage Prior to SCT</th>
<th>CAR T Cell Dose</th>
<th>Patient Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPM068</td>
<td>68yr, F</td>
<td>Diffuse large B cell</td>
<td>2nd Remission</td>
<td>None</td>
<td>50M</td>
<td>Expired 2yr post T cells</td>
</tr>
<tr>
<td>UPM047</td>
<td>70yr, M</td>
<td>Diffuse large B cell</td>
<td>Partial Remission</td>
<td>2 cycles R-ICE</td>
<td>250M</td>
<td>NED @ 18 mo</td>
</tr>
<tr>
<td>UPM048</td>
<td>69yr, F</td>
<td>Diffuse large B cell</td>
<td>Partial Remission</td>
<td>2 cycles R-ICE</td>
<td>50M</td>
<td>NED @ 12 mo</td>
</tr>
<tr>
<td>UPM052</td>
<td>70yr, M</td>
<td>Mantle Cell NHL</td>
<td>1st Remission</td>
<td>4 cycles R-GEMAC</td>
<td>50M</td>
<td>NED @ 12 mo</td>
</tr>
<tr>
<td>UPM051</td>
<td>59yr, F</td>
<td>Diffuse large B cell</td>
<td>Partial Remission</td>
<td>3 cycles R-ICE, ATO</td>
<td>250M</td>
<td>NED @ 11 mo</td>
</tr>
<tr>
<td>UPM055</td>
<td>59yr, F</td>
<td>Diffuse large B cell</td>
<td>Partial Remission</td>
<td>2 cycles R-CE</td>
<td>100M</td>
<td>Expired 3 mo post T cell</td>
</tr>
<tr>
<td>UPM056</td>
<td>59yr, M</td>
<td>Diffuse large B cell</td>
<td>Post Remission</td>
<td>Stable Disease</td>
<td>100M</td>
<td>NED @ 4 mo</td>
</tr>
<tr>
<td>UPM058</td>
<td>59yr, M</td>
<td>Diffuse large B cell</td>
<td>Post Remission</td>
<td>Stable Disease</td>
<td>100M</td>
<td>NED @ 5 mo</td>
</tr>
</tbody>
</table>
NHL1 Lessons Learned…….

- Feasibility of engineering and expanding CAR+ CD8+ Tcm, even post salvage chemotherapy.
- Safety of CD19-specific CAR T cells when administered in conjunction with auto HSCT, with no delay in hematopoietic reconstitution and no observed cytokine release syndrome in this MRD setting.
- Very low levels of CAR T cells detected in peripheral blood for a subset of patients.
- Subset of patients display long-term B cell aplasia.
- CAR T cell persistence and B cell aplasia does not appear to be dose dependent.

Evidence for CD19R-CAR T cell Persistence

Persistence of Transferred T cells Correlates with Clinical Success

Strategies to Improve T cell Persistence
- Incorporate lymphodepletion regimens prior to ACT (Dudley et al. JCO. 2008; 26: 5233).
- Reduce transgene immunogenicity
- Engineer T cell subsets with the propensity for long-term persistence (i.e. T memory cells)
- Optimize CAR design to include co-stimulatory signaling

Chimeric Antigen Receptor T Cells for Sustained Remissions in Leukemia

Probability of Event-free and Overall Survival at 6 Months
Cytokine release syndrome

- A constellation of inflammatory symptoms from cytokine elevations.
- Association with T cell activation and proliferation in T cell-engaging therapies.
- Association with clinical benefit.
- CRS-related death reported after Blinatumomab treatment.

CRP is a good biomarker for CRS syndrome

Fig. 4. CRP levels in patients infused with 19-28z CAR T cells.

Summary of NHL3 Phase I Clinical Trials To Initiate in 2014

<table>
<thead>
<tr>
<th>Trial ID</th>
<th>PI</th>
<th>Patient Population</th>
<th>Agent</th>
<th>T cell dose</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>13277</td>
<td>Dr. Popplewell</td>
<td>High-Risk NHL Patients with HSCT</td>
<td>NHL3 Autologous CD19R(EQ)28ζ/EGFRt+ Bulk TCM</td>
<td>50 to <800x10⁶ CAR+ cells</td>
<td>18</td>
</tr>
<tr>
<td>13447</td>
<td>Dr. Khaled</td>
<td>Relapsed/Refractory ALL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13351</td>
<td>Dr. Siddiqi</td>
<td>Relapsed/Refractory CD19+ B Cell Neoplasms</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CAR Transduced T Cell Therapy for ALL

- Treatment of relapse as bridge to transplant
- Treatment of relapse after allogeneic transplant (donor derived DLI) ??
- Planned infusion of T cells as part of transplant regimens
 - Autologous transplant for B cell lymphoma
 - Allogeneic transplant for ALL
- Vaccine + T cells (viral bi-specific T cells)

Engineering CMV-specific CAR T cells to express tumor-specific CARs

- Expansion/persistence of CAR T cells in response to CMV reactivation (pre-emptive DLI after alloHCT) and/or CMV vaccine
- Improve safety of allogeneic adoptive T cell therapy w/o GVHD
- Control CMV reactivation/disease
- Applicable to any malignancy by substituting a CAR specific to the individual tumor type
Engineering CD123-specific CAR T cells for the Treatment of Acute Myeloid Leukemia

Research Team
Armen Mardiros
Ravi Bhula
Cedric Dos Santos
Tinisha McDonald

Regulatory Team
Jamie Wagner
Anita Kurien
Julie Ostberg
Sandra Thomas

Clinical Team
Elizabeth Budde
Stephen Forman

Acute Myeloid Leukemia

- The most common acute leukemia in adults and has the highest mortality rate
- Cure rate for primary AML is 35% and decreases with age
- 5-year OS for AML patients post-1st relapse: ~10%
- AlloSCT is the preferred treatment route following a 2nd CR
- However less than half of patients are able to proceed to transplant due to treatment resistance

AML – second CR

- Ideally, AlloSCT candidates should be in remission, to improve post-transplant outcomes
- 2nd CR is not easily achieved
 - < 20% in patients with early relapse (<1yr in remission)
 - ~40% in patients with late relapse (≥1yr in remission)
- We need new treatments for relapsed AML as a potential bridge to transplant.

CD123 expression on AML patients

<table>
<thead>
<tr>
<th>AML Sample ID</th>
<th>Age/Sex</th>
<th>Cytogenetics</th>
<th>Clinical Status</th>
<th>Sample Type</th>
<th>CD123 (RFI)</th>
<th>CD34+ (RFI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>179</td>
<td>74/M</td>
<td>Interphase telomerase-</td>
<td>Relapsed</td>
<td>PB</td>
<td>428.32</td>
<td>99.22</td>
</tr>
<tr>
<td>373</td>
<td>47/M</td>
<td>Remission, Complex abnormalities</td>
<td>Relapsed</td>
<td>PB</td>
<td>1052.83</td>
<td>99.66</td>
</tr>
<tr>
<td>455</td>
<td>50/F</td>
<td>Interphase telomerase-</td>
<td>Relapsed</td>
<td>PB</td>
<td>23.98</td>
<td>76.80</td>
</tr>
<tr>
<td>519</td>
<td>57/F</td>
<td>del(17)(q21), del(13)(q14); normal loss of 7q36/p15.1</td>
<td>Relapsed</td>
<td>PB</td>
<td>40.18</td>
<td>97.40</td>
</tr>
<tr>
<td>545</td>
<td>60/M</td>
<td>Interphase telomerase-</td>
<td>Induction failure</td>
<td>PB</td>
<td>37.19</td>
<td>90.93</td>
</tr>
<tr>
<td>559</td>
<td>55/M</td>
<td>SAML Complex abnormalities</td>
<td>Apheresis</td>
<td>Apheresis</td>
<td>5.30</td>
<td>95.0</td>
</tr>
<tr>
<td>656</td>
<td>55/M</td>
<td>Normal</td>
<td>Persistent</td>
<td>PB</td>
<td>23.03</td>
<td>98.9</td>
</tr>
<tr>
<td>732</td>
<td>22/M</td>
<td>Interphase telomerase-</td>
<td>Untreated</td>
<td>PB</td>
<td>32.75</td>
<td>99.32</td>
</tr>
<tr>
<td>913</td>
<td>45/F</td>
<td>Complex abnormalities</td>
<td>Untreated</td>
<td>PB</td>
<td>27.19</td>
<td>90.83</td>
</tr>
</tbody>
</table>

Background

- The interleukin-3 receptor α chain (CD123) is over-expressed on AML cells compared to normal adult bone marrow (Jordan CT et al Leukemia 2000)
- Two phase I trials (CSL360 and SL-401) have been completed (NCT00401739 and NCT00397579)

CD123-AML associated Antigen

- Over-expressed on AML cells compared to normal adult hematopoietic stem/progenitor cells
- Expressed at highest levels on plasmacytoid dendritic cells; at lower levels on basophils, monocytes, eosinophils, and myeloid dendritic cells
Therapeutic concept

HSC
Mutation(s)
Anti-CD123 therapy
LSC
Normal growth and differentiation
Developmental arrest
Leukemia blast cells
Normal blood cells

CD123 Clinical Experience

- Two phase I trials (CSL360 and SL-401) have been completed (NCT00401739 and NCT00397579)

<table>
<thead>
<tr>
<th>Trial</th>
<th>Treatment</th>
<th>#</th>
<th>SAE</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSL360</td>
<td>7G3mAb</td>
<td>23</td>
<td>1- fungal infection</td>
<td>1 CR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-infusion rxn</td>
<td></td>
</tr>
<tr>
<td>SL-401</td>
<td>DT-IL3 q.o.d. x 6</td>
<td>45</td>
<td>8 - grade 3 AST/ALT</td>
<td>1 CR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 PR</td>
</tr>
</tbody>
</table>

CD123 CAR T cells

- Ag-specific activation
- Ag-driven proliferation
- Effective killing of autologous AML blasts

CD123 CAR T cells exhibit anti-leukemic activity in a xenogeneic model of AML

Primary AML samples are lysed by CD123-specific CAR T cells

CD123+ cell lines are lysed by CD123 CAR T cells

Primary AML samples are lysed by CD123-specific CAR T cells

CD123 CAR T cells

- Ag-specific activation
- Ag-driven proliferation
- Effective killing of autologous AML blasts

Primary AML samples are lysed by CD123-specific CAR T cells
Effect of CAR T cells on normal and leukemic progenitors

 normalized CFU-L

 Untreated CD19R 26292 32716

 150%

 100%

 50%

 0%

 200%

 p = 0.0472

 p = 0.0232

 p = 0.3778

 p = 0.2801

 Mardiros et al., Blood 2013

Adoptive Therapy for acute myeloid leukemia using CAR123-transduced T cells

- Specific Aim 1: Demonstrate the AML patient-derived CAR123-transduced T cells can be produced under current Good Manufacturing Practices at a clinical scale.
- Specific Aim 2: Functionally and phenotypically characterize GMP-produced AML patient-derived CAR123 T cells.
- Specific Aim 3: Initiate a first-in-human phase 1 clinical trial using autologous CAR123 T cells for the treatment of relapsed/refractory AML.