Treatment of Refractory Angina

Sunil V. Rao MD FACC FSCAI
Duke University Medical Center
The Duke Clinical Research Institute
The Durham VA Medical Center

The Picture of Advanced Coronary Artery Disease

- A 62 year old man
- Multiple risk factors
- Extensive past CV history
 - PCI 1985
 - CABG 1996 (all SVG)
 - Multiple PCI 1990-95
 - Repeat CABG 1996
 - Recurrent angina – positive stress test 2006
 - Recent cath – normal EF and diffuse CAD
- On excellent medical therapy
 - ASA, Clopidogrel, Statin, Ranolazine, Nitrate, Metoprolol, ARB, and Amlodipine
 - Insulin, anti-depressant

What would you try next in this patient?

A. Increasing medical therapy to maximal tolerated doses
B. Spinal cord stimulation
C. TMR
D. EECP

Disclosures

- Consultant, Honoraria
 - The Medicines Company, Terumo Medical, Astra Zeneca, Eli Lilly/Daiichi-Sankyo, ZOLL
- Research funding
 - Ikaria, sanofi-aventis
- Off-label uses
 - May be discussed in this presentation
- Thanks to Magnus Ohman MD for slides
Refractory angina

- Scope of the problem
- Therapeutic options
 - Challenges
 - Medical therapy
 - Devices
 - Revascularization
 - Spinal cord stimulation
 - EECP
 - TMR
- Future directions

Burden of Chronic Angina in the United States

- Chronic angina occurs in 6.5 million adults in the United States
 - 400,000 new cases diagnosed per year
 - Chronic angina is the initial sign of ischemic heart disease in 50% of patients
 - The symptoms of chronic angina can be debilitating in many patients
 - The prevalence of chronic angina in the US poses a significant burden to the health care system

ESC Joint Study Group on the Treatment of Refractory Angina: Most Common Reasons Why Further Revascularization is not Possible

- Unsuitable coronary anatomy
- Multiple previous CABG or valve surgery
- Lack of surgical conduits
- Extra-cardiac co-morbid illnesses – CKD, COPD, etc
- Advanced age – often in combination with co-morbid illnesses

Angina Symptoms Occur at End of Ischemic Cascade

Abnormalities evolving during ischemia

- Approximately ½ of patients with angina also experience episodes of asymptomatic (silent) ischemia
- Many episodes of ischemia never become painful

Advanced Heart Disease and Refractory Ischemia

- Refractory angina – ESC definition
 - A chronic condition (>3 months) characterized by the presence of angina caused by coronary insufficiency in the presence of coronary artery disease which cannot be controlled by a combination of medical therapy, angioplasty and coronary by-pass surgery. The presence of reversible myocardial ischemia should be clinically established to be the cause of the symptoms
- Advanced heart disease – practical definition
 - Symptomatic patients with multi-vessel CAD who are not candidates for revascularization with either PCI or CABG
Duke Databank Experience with Advanced CAD (3-vessel, L Main, EF<40%, and Severe Angina) Followed for an Average 2.2 Years

- Highly symptomatic
 - 79% CCS angina class III-IV
 - 27% trouble with any activity
- Poor social economic status
 - 36% income <$10,000
 - 43% retired
- High morbidity and mortality during flu
 - 38% mortality
 - 88% re-hospitalization
 - $74,128 in total healthcare costs

Prevalence of Medical Therapy at the Time of Catheterization by Year (Among Patients with Angina and Severe CAD)

<table>
<thead>
<tr>
<th>Year</th>
<th>1995</th>
<th>1997</th>
<th>1999</th>
<th>2001</th>
<th>2003</th>
<th>2005</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Treated Medically at the Time of Catheterization</td>
<td>36</td>
<td>36</td>
<td>34</td>
<td>32</td>
<td>36</td>
<td>30</td>
<td>32</td>
</tr>
</tbody>
</table>

Average: 32% treated medically at the time of catheterization

Refractory angina

- Therapeutic options
 - Challenges
 - Medical therapy
 - Devices
 - Revascularization
 - Spinal cord stimulation
 - EECP
 - TMR

Angina treatment: Objectives

- Prevent MI and death
- Improve quantity of life
- Reduce ischemia and relieve anginal symptoms
- Improve quality of life

Challenges in Evidence Based Medicine

- Challenges unique to refractory angina
 - Few clinical trials of anti-anginal therapies
 - Representation of patients with refractory angina is low in clinical trials
 - Small studies of device therapies
 - Often observational and retrospective rather than prospective and randomized

Refractory angina

- Symptom severity
- Therapeutic options
 - Medical therapy
- Therapeutic options

Management of Angina

- Combination medical therapy— if tolerated
 - Ranolazine
 - Nitrate – oral/topical
 - Beta-Blockers
 - Calcium Channel Blockers
- Once a day dosing may not suffice
 - Check HR and/or BP response with 24-hour recording
- Use life-style modifications
 - Pre-treat with SL NTG for exertion
 - Enroll in cardiac rehab
- Treat hypertension
 - Target BP < 140/80 mmHg

Long-Term Medication Use with CAD
Duke Cardiovascular Database: 1995-2002

- Therapeutic options
- Medical therapy

Six Medical Therapies Proven to Reduce Death

<table>
<thead>
<tr>
<th>Therapy</th>
<th>Indication</th>
<th># pts</th>
<th>Reduction in deaths</th>
<th>Relative Absolute C/E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspirin</td>
<td>MI</td>
<td>18,773</td>
<td>23%</td>
<td>2.4%</td>
</tr>
<tr>
<td>Fibrinolytics</td>
<td>MI</td>
<td>58,000</td>
<td>18%</td>
<td>1.8%</td>
</tr>
<tr>
<td>Beta blocker</td>
<td>MI</td>
<td>28,970</td>
<td>13%</td>
<td>1.3%</td>
</tr>
<tr>
<td>ACE inhibitor</td>
<td>MI</td>
<td>101,000</td>
<td>6.5%</td>
<td>6%</td>
</tr>
<tr>
<td>Aspirin</td>
<td>2nd prev</td>
<td>54,360</td>
<td>15%</td>
<td>1.2%</td>
</tr>
<tr>
<td>Beta blocker</td>
<td>2nd prev</td>
<td>20,312</td>
<td>21%</td>
<td>2.1%</td>
</tr>
<tr>
<td>Statins</td>
<td>2nd prev</td>
<td>17,617</td>
<td>23%</td>
<td>2.7%</td>
</tr>
<tr>
<td>ACE inhibitor</td>
<td>2nd prev</td>
<td>9,297</td>
<td>17%</td>
<td>1.9%</td>
</tr>
<tr>
<td>ACE inhibitor</td>
<td>CHF</td>
<td>7,105</td>
<td>23%</td>
<td>6.1%</td>
</tr>
<tr>
<td>Beta blocker</td>
<td>CHF</td>
<td>12,385</td>
<td>26%</td>
<td>4%</td>
</tr>
<tr>
<td>Spironolactone</td>
<td>CHF</td>
<td>1,663</td>
<td>30%</td>
<td>11%</td>
</tr>
</tbody>
</table>
CHARM Placebo group (n=3774): Predictors of Death

<table>
<thead>
<tr>
<th>Variable</th>
<th>OR (95% CI)</th>
<th>Chi-square (p-value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (per 10y)</td>
<td>1.78 (1.0-2.6)</td>
<td>132 (0.001)</td>
</tr>
<tr>
<td>EF (per 5%)</td>
<td>0.86 (0.84-0.9)</td>
<td>57 (0.001)</td>
</tr>
<tr>
<td>NYHA class</td>
<td>1.66 (1.4-1.9)</td>
<td>40 (0.001)</td>
</tr>
<tr>
<td>Heart rate (per 10 bpm)</td>
<td>1.22 (1.1-1.3)</td>
<td>29 (0.001)</td>
</tr>
<tr>
<td>BMI</td>
<td>0.96 (0.94-0.97)</td>
<td>26 (0.001)</td>
</tr>
<tr>
<td>Atherosclerosis (> v. <50%)</td>
<td>0.54 (0.43-0.70)</td>
<td>24 (0.001)</td>
</tr>
<tr>
<td>Smoking</td>
<td>1.72 (1.42-2)</td>
<td>21 (0.001)</td>
</tr>
<tr>
<td># medications</td>
<td>1.18 (1.0-1.5)</td>
<td>12 (0.001)</td>
</tr>
<tr>
<td>Diastolic BP (per 10)</td>
<td>0.90 (0.82-0.99)</td>
<td>7 (0.007)</td>
</tr>
<tr>
<td>Sex (female)</td>
<td>0.75 (0.63-0.90)</td>
<td>9 (0.002)</td>
</tr>
<tr>
<td># comorbidities</td>
<td>1.05 (1.0-1.1)</td>
<td>2 (0.188)</td>
</tr>
</tbody>
</table>

Granger B et al. Lancet 2005

TERISA: Study Design

- **Run-in Phase**: Single-blind placebo (4 weeks)
- **Treatment Phase**: Randomized double-blind parallel group phase (8 weeks): ranolazine (target dose 1000 mg bid vs. matching placebo)

Study Endpoints

- **Primary**: Average weekly number of angina episodes from weeks 2-8 of treatment
- **Key Secondary**: Average weekly number of SL NTG doses from weeks 2-8 of treatment

Baseline Characteristics by Study Group

<table>
<thead>
<tr>
<th>Antisanginal medications</th>
<th>Ranolazine (n=462)</th>
<th>Placebo (n=465)</th>
</tr>
</thead>
<tbody>
<tr>
<td>on 1 (%)</td>
<td>56.1</td>
<td>55.7</td>
</tr>
<tr>
<td>on 2 (%)</td>
<td>43.9</td>
<td>44.3</td>
</tr>
<tr>
<td>Beta blockers (%)</td>
<td>90.5</td>
<td>89.9</td>
</tr>
<tr>
<td>Calcium channel blockers (%)</td>
<td>26.8</td>
<td>30.8</td>
</tr>
<tr>
<td>Long acting nitrates (%)</td>
<td>34.8</td>
<td>32.5</td>
</tr>
<tr>
<td>Statins (%)</td>
<td>82.5</td>
<td>82.4</td>
</tr>
<tr>
<td>Antiplatelet agents (%)</td>
<td>89.8</td>
<td>86.5</td>
</tr>
<tr>
<td>ACE-I/ARBs (%)</td>
<td>88.1</td>
<td>87.5</td>
</tr>
<tr>
<td>Diary compliance - median % (IQR)</td>
<td>98 (95-98)</td>
<td>98 (95-98)</td>
</tr>
</tbody>
</table>

Weekly Angina Frequency by Study Group

- **Run In Phase**
- **Treatment Phase**

Enrollment and Randomization

- Assessed for Eligibility (n=1185)
 - Excluded (n=236)
 - Not meeting inclusion criteria (n=43)
 - Failed run-in (n=193)
- Randomized (n=949), 105 centers
- Discontinuation of Treatment (n=11)
- Randomized to Ranolazine (n=473)
- Randomized to Placebo (n=476)
- Analyzed (n=462)
- Analyzed (n=465)
Refractory angina

- Therapeutic options
- Devices
- Revascularization

Between 1986–2000 and Treated Without Revascularization
Over a 7-Year Mean Follow-up in 29,082 Patients Catheterized for CAD at Duke

Influence of Severity and Location of Stenosis on Cardiac Death
Over a 7-Year Mean Follow-up in 29,082 Patients Catheterized for CAD at Duke Between 1986–2000 and Treated Without Revascularization

Safety and Tolerability

<table>
<thead>
<tr>
<th>Ranolazine</th>
<th>Placebo</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serious Adverse Events</td>
<td>n=470</td>
<td>n=474</td>
</tr>
<tr>
<td>Serious adverse event</td>
<td>16 (3.4)</td>
<td>20 (4.2)</td>
</tr>
<tr>
<td>Death</td>
<td>3 (0.6)</td>
<td>2 (0.4)</td>
</tr>
<tr>
<td>Nonfatal myocardial infarction</td>
<td>1 (0.2)</td>
<td>3 (0.6)</td>
</tr>
<tr>
<td>Stroke/transient ischemic attack</td>
<td>1 (0.2)</td>
<td>4 (0.8)</td>
</tr>
<tr>
<td>Unstable angina or coronary revascularization</td>
<td>6 (1.3)</td>
<td>7 (1.5)</td>
</tr>
</tbody>
</table>

Weekly SL NTG Doses

| Placebo | Ranolazine | p=0.003 |

<table>
<thead>
<tr>
<th>Study Week</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL NTG Doses</td>
<td>Run In Phase</td>
<td>Treatment Phase</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COURAGE Trial
N=2297 pts. With significant CAD and myocardial ischemia

PCI vs. medical therapy in Stable CAD
Effect on mortality; N=17 randomized trials, 7513 pts.
PCI versus Medicine Meta-Analysis:
Reduction in Angina

6 RCTs: 953 PCI pts and 951 Med pts

- **End point**
 - Angina
 - Death
 - PTCA
 - CABG

- **Risk ratio (95% CI)**
 - Angina: 0.70 (0.50 to 0.98)
 - Death: 1.32 (0.65 to 2.70)
 - PTCA: 1.29 (0.71 to 3.36)
 - CABG: 1.59 (1.09 to 2.32)

Test of heterogeneity P=0.001

<table>
<thead>
<tr>
<th></th>
<th>0.04</th>
<th>0.06</th>
<th>0.08</th>
<th>0.10</th>
<th>0.12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Favour SCA</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Favour PTCA</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Favour medical treatment</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Revascularization Survival Benefit Attribution
Duke 1986-2000

Additional Months of Life per 17 Years by CABG

- CABG better
- PCI better
- *p<0.05*

<table>
<thead>
<tr>
<th></th>
<th>Low</th>
<th>Intermed</th>
<th>High</th>
<th>Low</th>
<th>Intermed</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>CABG vs Med</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Revasc vs Med</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Survival by residual ischemia

N=314 patients in COURAGE nuclear substudy

Unadjusted p=0.001
Risk-adjusted p=0.09

Cumulative Event-Free Survival, %

- F/U in years: 1.5, 4.9, 5

Challenges with revascularization

- No suitable angiographic targets!

Refractory angina

- Therapeutic options
 - Devices
 - Spinal cord stimulation
 - EECP
 - TMR

Device therapy for angina

- Spinal Cord Stimulator (SCS)
 - Surgically or percutaneously implanted, C7-T1 level
 - Mechanisms of benefit
 - Reduced nociception
 - Reduction in overall sympathetic tone
 - Potential changes in cerebral blood flow affecting pain perception
 - Potential enhancement of coronary perfusion
 - Class IIb, LOE B in the guidelines
 - Few randomized studies*
 - Risks
 - Lead migration (5-13%), lead breakage (5-9%), infection (3%)
 - Potential masking of AMI

Eckert S, Horstkottke D. Am J Cardiovasc Drugs 2009
Gibbons RJ, et al. Circulation 2003
Enhanced External CounterPulsation

- May release angiogenic growth factors
- Recruit/develop collateral coronary circulation
- May have long-lasting effects in some patients
- Class IIb, LOE B
 - Placebo-controlled randomized trial showing decreased angina, increased exercise time
- Low risk, but requires therapy for several hours over several weeks

Enhanced External CounterPulsation

TransMyocardial Revascularization (TMR)

Meta-analysis of 7 RCTs, N=1053 patients

- Angina relief ≥ 2 classes at 1 year

TransMyocardial Revascularization (TMR)

RIVER PCI Study GS-US-259-0116

- 2600 patients, event driven outcome study
- Ranolazine 1000 mg BID vs. Placebo (1:1 randomization)
Inclusion criteria and endpoints

- Underwent PCI for any indication within 14 days of randomization
- History of chronic angina with at least 2 episodes which occurred on at least 2 separate days and at least 14 days prior to PCI
- Incomplete revascularization
 - one or more visually estimated ≥ 50% stenoses in one or more coronary arteries with reference vessel diameter ≥ 2.0mm
- Primary: Time to first occurrence of
 - Ischemia-driven revascularization, or
 - Ischemia-driven hospitalization (without revascularization)
- Secondary: Time to first occurrence of
 - Sudden cardiac death
 - Cardiovascular death
 - Myocardial infarction