ROBOTIC RADICAL CYSTECTOMY FOR BLADDER CANCER

Raj S. Pruthi, M.D. FACS
Chief of Urology
Division of Urologic Surgery
The University of North Carolina at Chapel Hill

Bladder Cancer:
- 70,980 cases per year in U.S.
 - Rising incidence – 40% since 1975
- 14,330 deaths per year
 - Stable / slight decline
- 600,000 survivors in the U.S.

Bladder Cancer:
- 70-75% are non-muscle invasive (Ta, Tis, T1)
 - 70% recur
 - 25% progress to higher stage or grade
- 20-25% are muscle invasive (T2, T3, T4)
- 5% are metastatic

Bladder Cancer: Staging (AJCC 1997)
- Ta (non-invasive, papillary)
- Tis (CIS)
- T1 (invades lamina propria)
- T2 (invades muscle)
- T3 (invades perivesical tissue)
- T4 (invades adjacent organs)
 - T4a = prostate, uterus, vagina
 - T4b = pelvic, abdominal wall

Management of Bladder Cancer
- "Caged" Tiger
- "Uncaged" Tiger
- Bladder Preservation
- Cystectomy

Indications for radical cystectomy
- Muscle-invasive bladder cancer
- Recurrent high-risk non-invasive cancer
 - T1 tumors unresponsive to BCG therapy
 - CIS refractory to BCG therapy
- Palliation
 - pain, bleeding, or voiding dysfunction
Radical Cystectomy

- Provides best chance at local control / survival for invasive disease
- Historically -- concerns regarding the high morbidity of surgery

Recent Improvements

- Improved pelvic surgical experience
 - Radical prostatectomy volumes
- Peri-operative care - Clinical Care Pathways
 - e.g. non-narcotic analgesics
- Technology
 - Staplers, hemostatic devices (Ligasure, Harmonic scalpel)
 - Potential role of laparoscopy / robotics

Robotic Cystectomy Session

- Review of principles and outcomes
- Video description
 - Step-by-step
 - Edited complete cystectomy
 - Robotic PLND
 - Female cystectomy
 - Intracorporeal diversion
 - (modifications – partial cystectomy, prostate-sparing)
- Complications and cystectomy
- Getting started

OUTCOMES WITH ROBOTIC RADICAL CYSTECTOMY FOR BLADDER CANCER

Raj S. Pruthi, M.D. FACS
Chief of Urology
Division of Urologic Surgery
The University of North Carolina at Chapel Hill

Robotic Cystectomy

- Has emerged from growing experience with robotic assisted prostatectomy
- May offer viable alternative to open radical cystectomy in select patients

Robotic-assisted Radical Cystectomy

- Potential benefits
 - Reduced ebl
 - Decreased incision / pain
 - Less fluid imbalances
 - Decreased bowel manipulation
- Potential Concerns
 - Maintain oncological principles
 - Margins, bladder entry, tumor seeding, LN’s
 - Per-operative results
 - Prolonged OR times, complications
 - Learning curve
 - Costs
Principles

• Indications for cystectomy
• Peri-operative management
 – Use of neoadjuvant / adjuvant chemotherapy
 – Peri-operative care – clinical care pathways
• Extirpative procedure
 – Completeness of resection
 – LN dissection – templates/extent
• Urinary diversion

Oncologic outcomes

Priorities

• Oncologic outcomes
 – RFS and DSS (2-yr and 5-yr)
 – Surrogates
 • Soft tissue margins
 • LN yield
• Morbidity
 – Peri-operative outcomes
 • EBL, Pain, Bowel recovery, Discharge, Complications
 • Functional recovery
 • Return to activities, urinary function, sexual function
• Other
 – Learning curve
 – Costs

Standardization for open radical cystectomy

<table>
<thead>
<tr>
<th>Component</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of cases /year</td>
<td>At least 10/year to maintain proficiency</td>
</tr>
<tr>
<td>Overall Margin Status</td>
<td>Less than 10%</td>
</tr>
<tr>
<td>Margins in Bulky (T3-4) Disease</td>
<td>Less than 15%</td>
</tr>
<tr>
<td>Standard PLND</td>
<td>At least 80% cases</td>
</tr>
<tr>
<td>Lymph Node Yield</td>
<td>At least 10-14</td>
</tr>
</tbody>
</table>

Priorities

• Oncologic outcomes
 – RFS and DSS (2-yr and 5-yr)
 – Surrogates
 • Soft tissue margins
 • LN yield
• Morbidity
 – Peri-operative outcomes
 • EBL, Pain, Bowel recovery, Discharge, Complications
 • Functional recovery
 • Return to activities, urinary function, sexual function
• Other
 – Learning curve
 – Costs

“Not so long ago at all, cystectomy was performed using a traditional open surgical procedure; and therefore usually involved notable tissue and nerve damage, significant blood loss and carried a greater risk of post-operative infections and complications. By comparison, the robotic-assisted laparoscopic cystectomy may seem a bit like a kind of state-of-the-art miracle.”

“Robotic-assisted cystectomy also offers patients a cancer removal rate that is 14% higher.”

Unit Onc (2009)
Rate confidence RALC can achieve comparable negative margins to open

Davis J et al. SUO Survey 2008

Peer-reviewed literature

- RCT (1)
- Case series (9)
- Multi-institutional (n=4) analysis
- IRCC (International Robot-Assisted Cystectomy Consortium)

Priorities

- Oncologic outcomes
 - RFS and DSS (2-yr and 5-yr)
 - Surrogates
 - Soft tissue margins
 - LN yield
- Morbidity
 - Peri-operative outcomes
 - EBL, Pain, Bowel recovery, Discharge, Complications
 - Functional recovery
 - Return to activities, urinary function, sexual function
- Other
 - Learning curve
 - Costs

Survival

- Castle et al (2009)
 - N = 80; mean FU 25 months
 - 31 pts followed >=12 months
 - DSS = 87% at 12 months; 71% at 36 months
- Dasgupta (2009)
 - N = 20; mean FU 23 months
 - RFS = 90%
- Pruthi et al (2010)
 - N = 100
 - Mean FU 21 months (5-44 mos)
 - RFS = 85%
Medium-term Oncologic Outcomes

- From a combined series of 271 patients (UNC + Mayo-Scottsdale)
 - N = 139 with >= 2 years FU
 - <= pT2 = 44%
 - pT3-T4 = 27%
 - N+ = 29%
- Mean FU = 36 months
 - RFS = 71%
 - DSS = 80%
 - OS = 68%

Comparable to reports in open series

LN+ Patients

- Combined Series (n=271)
 - N = 50 with N+ and >= 1 year FU
 - pT2 = 34%
 - pT3-4 = 66%
 - 80% pts received peri-op chemo
 - Mean LNs = 18
 - Mean positive LN = 3.1
 - Mean LND = 18%
- Mean FU = 29 months
 - RFS = 42%
 - DSS = 58%

Comparable to reports in open series

Priorities

- Oncologic outcomes
 - RFS and DSS (2-yr and 5-yr)
 - Surrogates
 - Soft tissue margins
 - LN yield
- Morbidity
 - Peri-operative outcomes
 - EBL, Pain, Bowel recovery, Discharge, Complications
 - Functional recovery
 - Return to activities, urinary function, sexual function
- Other
 - Learning curve
 - Costs

Positive Margins

- Features of Tumor
 - Stage, size, extent
- Quality of Surgery
 - Procedure, ability, experience

Positive Margins

- Features of Tumor
 - Stage, size, extent
- Quality of Surgery
 - Procedure, ability, experience

Does the robotic approach increase positive margin rates?

Implications

- Increased local recurrence
- Decreased RFS 26-29% (vs. 68-76%)
- Decreased DSS (HR 2.0 - 2.6)
- Association with stage (gender, histology, LVI)
- Independent predictor of recurrence / DSS
- Sites - Posterior / lateral (53-78%)

Hadjizacharia (2008)
Dotan (2007)
Positive Soft Tissue Margin Rates

- Open: 1.1 - 14.0%
- Robotic: 0.0 – 14.0%

Hadjizacharia (2008)
Dotan (2007)
Herr (SWOG) (2004)
Brendler (1990)
Wang (2008)
Abraham (2007)
Guru (2007)
Pruthi (2008)

Current Literature

<table>
<thead>
<tr>
<th>Author</th>
<th>No.</th>
<th>Margin Positive</th>
<th>Overall</th>
<th><= T2</th>
<th>>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pruthi (2007)</td>
<td>20</td>
<td>0%</td>
<td>0/20</td>
<td>0/0</td>
<td></td>
</tr>
<tr>
<td>Wang (2007)</td>
<td>33</td>
<td>6%</td>
<td>0/17</td>
<td>2/16</td>
<td></td>
</tr>
<tr>
<td>Murphy (2008)</td>
<td>23</td>
<td>0%</td>
<td>0/19</td>
<td>0/4</td>
<td></td>
</tr>
<tr>
<td>Guru (2008)</td>
<td>125</td>
<td>0%</td>
<td>0/55</td>
<td>10/70</td>
<td></td>
</tr>
<tr>
<td>Castle (2009)</td>
<td>100</td>
<td>3%</td>
<td>0/51</td>
<td>3/49</td>
<td></td>
</tr>
<tr>
<td>Pruthi (2010)</td>
<td>100</td>
<td>0%</td>
<td>0/67</td>
<td>0/33</td>
<td></td>
</tr>
</tbody>
</table>

IRCC: Positive Margins

- Overall positive margin rate = 6.8%

<table>
<thead>
<tr>
<th>Tumor stage</th>
<th>Positive margins</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0-T1</td>
<td>5/327</td>
<td>1.5%</td>
</tr>
<tr>
<td>T3-T4</td>
<td>3/181</td>
<td>17%</td>
</tr>
</tbody>
</table>

- Collaborative Group (open) (n=1,091) = 6.5%
- Recent multicenter (open) (n=4,410) = 6.3%

Herr (2004)
Novara (2010)

Priorities

- **Oncologic outcomes**
 - RFS and DSS (2-yr and 5-yr)
 - Surrogates
 - Soft tissue margins
 - LN yield
 - Peri-operative outcomes
 - EBL, Pain, Bowel recovery, Discharge, Complications
 - Functional recovery
 - Return to activities, urinary function, sexual function
- **Morbidity**
- **Other**
 - Learning curve
 - Costs
- **Lymphadenectomy**
 - Pelvic LND is standard adjunct to cystectomy for UC
 - Definitions of PLND
 - Limited
 - Standard
 - Extended
 - Variables affecting counts
 - Packets
 - Pathology analysis
 - Patient anatomy / inherent node counts
 - Extent of dissection / templates

Procedure

- Posterior
- Lateral

Lymphadenectomy
Lymphadenectomy

- Pelvic LND is standard adjunct to cystectomy for UC
- Definitions of PLND
 - Limited
 - Standard
 - Extended
- Variables affecting counts
 - Packets
 - Pathology analysis
 - Patient anatomy / inherent node counts
 - Extent of dissection / templates

Can robotics replicate open standards – templates / counts?

Comparison to Open

- Endometrial Cancer
 - Matched for age, stage, BMI
 -Rad Hysterectomy + LND (pelvic + para-aortic)
 -Mean LN’s

<table>
<thead>
<tr>
<th>Series</th>
<th>LN Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Castle (n=80)</td>
<td>21 (7-35)</td>
</tr>
<tr>
<td>Guru (n=127)</td>
<td>27 (6-68)</td>
</tr>
<tr>
<td>Omstein (n=35)</td>
<td>22 (14-36)</td>
</tr>
<tr>
<td>Pruthi (n=100)</td>
<td>19 (8-37)</td>
</tr>
<tr>
<td>Davis (n=10)</td>
<td>38 (19-63)</td>
</tr>
<tr>
<td>IRCC (n=529)</td>
<td>18 (0-68)</td>
</tr>
<tr>
<td>Multi-inst (n=227)</td>
<td>18 (3-52)</td>
</tr>
<tr>
<td>Herr et al (n=1091)</td>
<td>12.5</td>
</tr>
</tbody>
</table>

Comparison to Open

ROBOT PLND FOR BLADDER CANCER WITH 2ND LOOK OPEN EVALUATION

- Mean % Nodal Yields
 - O robot = 73%
 - S robot = 96%

-80 Zones from 10 cases, 2nd look results:
 - No tissue submitted: 57 (71%)
 - Tissue submitted, no nodes: 10 (13%)
 - Tissue submitted, nodes present: 13 (16%)

- No positive LN captured by 2nd look open

LN Yield from published series

Sample Size Calculation

- Alpha = 0.05
- Beta = 0.20
- Expected Variance = 0.0625
- LN standard deviation in prior studies = 5
- Acceptable difference of 4 lymph nodes
- Sample size of 20 required in each group
- Target accrual of 40 patients
• Demonstrated non-inferiority of LN yield
 - 19 vs 18 LN

<table>
<thead>
<tr>
<th>Pathologic stage</th>
<th>Robotic (n=21)</th>
<th>Open (n=20)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2N0 or lower</td>
<td>14</td>
<td>8</td>
<td>0.2248</td>
</tr>
<tr>
<td>T2N1 or T3N0</td>
<td>3</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>T4N+</td>
<td>4</td>
<td>7</td>
<td>-</td>
</tr>
<tr>
<td>Positive margins</td>
<td>0</td>
<td>0</td>
<td>NA</td>
</tr>
</tbody>
</table>

Table 3 - Pathologic outcomes

• Mean LN’s removed
 - Robotic = 19 (8 - 40)
 - Open = 16 (6 - 35)

UNC Experience

• 326 pts underwent robotic radical cystectomy (Jan 2006 – October 2011)
 - 231 male + 95 female
 - 76% of cystectomies (n=429) during this time

Pelvic Lymphadenectomy

• Obturator / hypogastric LND
• Common iliac LND
• Para-aortic (+ pre-sacral) LND

Can we replicate with robotics?

• Surgeon can do whatever lymphadenectomy he/she does open
• Robot itself does not limit extent of dissection / template

Priorities

• Oncologic outcomes
 - RFS and DSS (2-yr and 5-yr)
 - Surrogates
 - Soft tissue margins
 - LN yield
 - Morbidity
 - Peri-operative outcomes
 - EBL, Pain, Bowel recovery, Discharge, Complications
 - Functional recovery
 - Return to activities, urinary function, sexual function
 - Other
 - Learning curve
 - Costs

<table>
<thead>
<tr>
<th>Author</th>
<th>No.</th>
<th>OR Time (mins)</th>
<th>EBL (ml)</th>
<th>Hospital Stay (days)</th>
<th>% Comp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menon (2003)</td>
<td>17</td>
<td>298</td>
<td>150</td>
<td>n/a</td>
<td>-</td>
</tr>
<tr>
<td>Pruthi (2007)</td>
<td>20</td>
<td>366</td>
<td>313</td>
<td>5</td>
<td>25%</td>
</tr>
<tr>
<td>Wang (2007)</td>
<td>33</td>
<td>390</td>
<td>400</td>
<td>5</td>
<td>21%</td>
</tr>
<tr>
<td>Murphy (2008)</td>
<td>23</td>
<td>397</td>
<td>278</td>
<td>12</td>
<td>20%</td>
</tr>
<tr>
<td>Castle (2009)</td>
<td>80</td>
<td>275</td>
<td>225</td>
<td>5</td>
<td>28%</td>
</tr>
<tr>
<td>Kaufman (2009)</td>
<td>79</td>
<td>360</td>
<td>400</td>
<td>5</td>
<td>46% (11%)</td>
</tr>
<tr>
<td>IRCC (2009)</td>
<td>528</td>
<td>328</td>
<td>426</td>
<td>8</td>
<td>-</td>
</tr>
<tr>
<td>Pruthi (2010)</td>
<td>100</td>
<td>276</td>
<td>271</td>
<td>5</td>
<td>36% (8%)</td>
</tr>
<tr>
<td>Multi (2010)</td>
<td>227</td>
<td>327</td>
<td>256</td>
<td>5.5</td>
<td>30% (7%)</td>
</tr>
</tbody>
</table>
Statistical Analysis

- **Univariate Analysis:**
 - Continuous Variables: T-test
 - Categorical Variables: Chi-square

- **Multivariate Analysis:**
 - Generalized linear models
 - Outcomes:
 - Operative: EBL, Operative Time, Lymph Node Count
 - Post-Operative: Clavien complications, Days to First Bowel Movement/Flatus, Length of Stay
 - Covariates: Age, Sex, BMI, Pathologic stage
 - Predictor: Cystectomy Type (open vs. robotic)

Randomized Trial

<table>
<thead>
<tr>
<th></th>
<th>Robotic (n=20)</th>
<th>Open (n=21)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean EBL</td>
<td>258 ml</td>
<td>575 ml</td>
<td><0.0001</td>
</tr>
<tr>
<td>OR Time</td>
<td>4.20 hrs</td>
<td>3.32 hrs</td>
<td><0.0001</td>
</tr>
<tr>
<td>Time to Flatus</td>
<td>2.3 days</td>
<td>3.2 days</td>
<td>0.0013</td>
</tr>
<tr>
<td>Time to BM</td>
<td>4.2 days</td>
<td>4.3 days</td>
<td>0.0008</td>
</tr>
<tr>
<td>Length of Stay</td>
<td>5.1 days</td>
<td>6.0 days</td>
<td>0.2387</td>
</tr>
<tr>
<td>In-House Analg (Morphine)</td>
<td>89.0 mg</td>
<td>147.4 mg</td>
<td>0.0044</td>
</tr>
<tr>
<td>Clavien Units</td>
<td>2.3</td>
<td>2.6</td>
<td>0.5622</td>
</tr>
</tbody>
</table>

Post Operative Pain

- Postoperative Pain after Robot-Assisted Radical Cystectomy

Complications

- 100 consecutive patients
- 41 complications in 36 patients
 - 8% Clavien Grade 3+

Critical analysis of complications after robotic-assisted radical cystectomy with identification of preoperative and operative risk factors

- Robotic was independent predictor of lower complications (vs. open)
- 90 day comp. rate = 49%
 - N = 79; 58% ASA 3-4
- Most low grade (infectious (41%), or GI (27%))
- High grade
 - 16 complications in 13 pts (16%)
- Factors predicting high grade complications
 - Age >65 yo (RR=13), IV fluids > 5000 ml (RR=42), EBL > 500 cc (RR=10)

Raynor, AUA (2010)
Priorities

• Oncologic outcomes
 – RFS and DSS (2-yr and 5-yr)
 – Surrogates
 • Soft tissue margins
 • LN yield

• Morbidity
 – Peri-operative outcomes
 • EBL, Pain, Bowel recovery, Discharge, Complications
 – Functional recovery
 • Return to activities, urinary function, sexual function

• Other
 – Learning curve
 – Costs

What is the long-term Impact?

• Assessment of QOL using FACT-BL and SF-12

• 52 Patients undergoing radical cystectomy (open and robotic)

• Mean FU = 24.8 months

Long-term QOL Impact

• No difference (open vs. robotic) in any FACT-BL or SF domains except:
 – Interest in sex (BL4) (p=0.011)
 – Ability to have/maintain an erection (BL5) (p=0.035)

<table>
<thead>
<tr>
<th>GP</th>
<th>GS</th>
<th>GE</th>
<th>GF</th>
<th>AC</th>
<th>PCS</th>
<th>MCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robotic (n=33)</td>
<td>8.6</td>
<td>20.9</td>
<td>7.0</td>
<td>20.1</td>
<td>14.4</td>
<td>43.9</td>
</tr>
<tr>
<td>Open (n=19)</td>
<td>4.3</td>
<td>22.0</td>
<td>6.1</td>
<td>21.8</td>
<td>12.1</td>
<td>42.2</td>
</tr>
<tr>
<td>p value</td>
<td>0.168</td>
<td>0.496</td>
<td>0.446</td>
<td>0.328</td>
<td>0.117</td>
<td>0.655</td>
</tr>
</tbody>
</table>

Priorities

• Oncologic outcomes
 – RFS and DSS (2-yr and 5-yr)
 – Surrogates
 • Soft tissue margins
 • LN yield

• Morbidity
 – Peri-operative outcomes
 • EBL, Pain, Bowel recovery, Discharge, Complications
 – Functional recovery
 • Return to activities, urinary function, sexual function

• Other
 – Learning curve
 – Costs

Learning Curve

• Transitioning from open to robotic techniques can be daunting

• Little report or description of experience of learning curve with regard to radical cystectomy

Pruthi et al, J Endo (2009)
Smith et al, J Urol (2010)
Blood Loss

Robotic Cystectomy Learning Curve: Blood Loss

- Blood loss (mL) vs Case Number
- Median blood loss stabilizes after approximately 20 cases

Operative Time

Robotic Cystectomy Learning Curve: Operative Time

- OR Time (Hours) vs Case Number
- Operative time stabilizes after approximately 40 cases

Lymph Node Count

Robotic Cystectomy Learning Curve: Lymph Node Count

- Lymph node count vs Case Number
- Consistency in lymph node count across cases

Learning Curve: Conclusions

- Learning curve of robotic cystectomy is a teachable and learnable technique
 - After 20 cases, no significant difference in blood loss
 - After 40 cases, no significant difference in operative time
 - No significant differences in margins, lymph node count, return of bowel function, and length of stay among quintiles
- For those competent in robotic prostatectomy techniques, adopting robotic technique for cystectomy is a feasible process

Priorities

- **Oncologic outcomes**
 - RFS and DSS (2-yr and 5-yr)
 - Surrogates
 - Soft tissue margins
 - LN yield
- **Morbidity**
 - Peri-operative outcomes
 - EBL, Pain, Bowel recovery, Discharge, Complications
 - Functional recovery
 - Return to activities, urinary function, sexual function
- **Other**
 - Learning curve
 - Costs

What are the costs of robotic cystectomy?

- Robotic approaches in urologic surgery are increasing
- Financial cost is an important consideration
- Robotic prostatectomy has been evaluated
 - Some report increased costs overall
 - Others describe cost equivalence in high volume centers
- Cost analysis reports on robotic cystectomy lacking

Notes

- Pruthi et al, J Endo (2009)
- Smith et al, J Urol (2010)
Financial Costs
• Fixed OR costs
 – Base OR costs
 – Robotic investment and instruments ($2,303/case)
 – Maintenance
• Variable OR costs
 – Anesthesia (per time)
 – OR personnel (per time)
• Hospital costs
 – Hospital cost per day ($940/day)
 – Transfusion cost per unit ($268/unit)

Results
<table>
<thead>
<tr>
<th>Costs</th>
<th>Open</th>
<th>Robotic</th>
</tr>
</thead>
<tbody>
<tr>
<td>OR Fixed</td>
<td>$2,398</td>
<td>$4,032</td>
</tr>
<tr>
<td>OR Variable</td>
<td>$7,228</td>
<td>$7,798</td>
</tr>
<tr>
<td>Hospital</td>
<td>$4,982</td>
<td>$4,418</td>
</tr>
<tr>
<td>Mean</td>
<td>$14,608</td>
<td>$16,248</td>
</tr>
</tbody>
</table>

Difference of $1640

Costs Summary
• Robotic Cystectomy
 – Higher OR fixed costs ($1,634)
 – Higher OR variable costs ($570)
• Open Cystectomy
 – Higher hospital costs ($564)

Costs – Re-analysis
• Utilizing RCT (Nix et al, 2009) (n = 41)

<table>
<thead>
<tr>
<th>Costs</th>
<th>ORC (95% CI)</th>
<th>RMC (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall costs†</td>
<td>$19,047 (16,675 - 21,030)</td>
<td>$19,637 (18,297 - 22,312)</td>
</tr>
<tr>
<td>OR fixed‡</td>
<td>$5,742</td>
<td>$6,202</td>
</tr>
<tr>
<td>OR dispos.</td>
<td>$5,875</td>
<td>$5,880</td>
</tr>
<tr>
<td>OR capital</td>
<td>$2,658</td>
<td>$2,649</td>
</tr>
<tr>
<td>Post-op hospital costs†</td>
<td>$2,667</td>
<td>$3,907</td>
</tr>
</tbody>
</table>

Not significantly different

Conclusion
• Unclear if robotic cystectomy is associated with higher financial cost compared to open in peri-operative setting
 – Primary difference related to robotic costs
• Does not evaluate potential financial impact of multiple other factors
 – Morbidity
 – Time of outpatient convalescence
 – Overall disability

Robotic vs. Open
• Comparable
 – surgical margin status
 – lymph node yield
 – long-term QOL
• Potential Benefits
 – EBL
 – recovery of bowel function
 – pain
• Potential Negatives
 – OR time
 – Costs (maybe)

Long-term oncologic outcomes still remain uncertain
Future Directions

- Increased worldwide experience
- Long-term oncologic assessment
- Multi-institutional RCT
- Intracorporeal urinary diversion

rpruthi@med.unc.edu