Chronic upper extremity overuse

- Tennis elbow
- Golfer’s elbow
- Ulnar neuritis
- Olecranon bursitis
- Radial tunnel syndrome
- Intersection syndrome
- Dequervain’s stenosing tenosynovitis
- Flexor tenosynovitis causing median nerve compression
- Digital flexor tenosynovitis
- Digital extensor tenosynovitis
Chronic upper extremity overuse

- Tennis elbow*
- Golfer’s elbow*
- Ulnar neuritis
- Olecranon bursitis
- Radial tunnel syndrome
- Intersection syndrome
- Dequervain’s stenosing tenosynovitis*
- Flexor tenosynovitis causing median nerve compression*
- Digital flexor tenosynovitis*
- Digital extensor tenosynovitis

Most Common Referrals

- Wrist Tendinopathies
- Elbow Tendinopathies
- Finger stenosing tenosynovitis
- Repetitive stress/strain disorder

Total strain = strain (elastic) + strain (viscous)

1 sec load, 9 second recovery

8 second load, 2 second recovery
Armstrong et al, JHS, 1987
Ergonomics considerations in hand and wrist tendinitis

- Cross sectional study 652 workers
 - 4 cohorts (hi force and repetition, hi force low repetition, low force hi repetition, low force low repetition)
- High force, high repetition cohort odds ratio 29.5 versus low force, low frequency 1.0 (p < 0.001)
- Jobs adjusted odds ratio: women 4.3x more likely to develop tendinitis
- Hand and wrist posture and vibration exposure were not significant factors
- None of the non-occupational factors was significant (except for gender)
• Goals
 – Define the etiology and treatment of chronic overuse syndromes
 – Be able to provide a differential diagnosis and treatment options for these issues

Tendinopathies – Wrist Tenosynovitis

• Introduction
 – Most patients with wrist tendinopathy present with localizable, activity related pain
 – +/- history of injury, repetitive activity
 – Pain/functional limitation
• Introduction
 – Diagnosis often made on physical exam
 – Provocative maneuvers
 – Differential diagnosis
 – Radiographic studies often unnecessary
 • X-rays – Rule out bony etiologies
 • MRI – Rule out other soft tissue etiologies
 – Confirmatory – signal intensity changes about affected tendons (especially edema/fluid in T2 weighted images)

• Introduction
 – Treatment options generally include
 • Splinting/NSAIDS/OT
 • Corticosteroid injection(s)
 • Surgical releases

• Anatomy - dorsal compartments
 • 1st- APL & EPB
 • 2nd- ECRL & ECRB
 • 3rd- EPL
 • 4th- EIP & EDC
 • 5th- EDQ
 • 6th- ECU
• De Quervain’s Tenosynovitis
 – Stenosing tendovaginitis or tenosynovitis of the first dorsal extensor compartment:
 • Abductor pollicis longus tendons – 2 or more slips
 • Extensor pollicis brevis tendon
 – Extensor sheath becomes relatively stenotic or narrowed leading to pain and inflammation
• Anatomy
 – The anatomy of the first dorsal compartment is variable
 • EPB is absent in 5-7% of population
 • In 33% of population, the EPB tendon is separated from the multiple APL slips by a fibro-osseous tunnel or septum
 • Failure to recognize this variation can be a cause of treatment failure

• De Quervain’s
 Pathophysiology
 – Thick sheath over first dorsal compartment shows histologic changes, similar to pulley with stenosing tenosynovitis
 – Thickening of the sheath and accumulation of mucopolysaccharides have been seen

• De Quervain’s Tenosynovitis - History
 – More common in women (6:1 ratio)
 – Often occurs in new mothers and in later stages of pregnancy as an overuse of the thumb
 – Pain at the thumb base or radial wrist
 – Patients will sometimes complain of ‘clunking’ of the thumb – pseudo-triggering
• Finkelstein's test

• De Quervain's tenosynovitis
 – Differential diagnosis
 • Thumb CMC joint arthritis/instability
 • STT arthritis
 • Scapholunate ligament disruption
 • Radioscaphoid degenerative changes
 • Intersection syndrome

• De Quervain’s tenosynovitis
 – Treatment
 • Conservative
 • Operative
• Conservative Treatment for DeQuervain’s
 – Thumb spica splints – forearm based
 – Helpful for acute symptoms and in combination with other modalities
 – Shown in one prospective study to have a 70% failure rate long-term
 – In combination with NSAIDS
 – Occupational therapy- in combination with other modalities

• Corticosteroid Injections
 – Injection has been shown prospectively to resolve symptoms in 62% of patients
 – Risks of injection, however, must be considered
 – Generally limit number of injections (2-3 max)

• Risks of Steroid Injection into First Dorsal Compartment
 – Because of the very subcutaneous location of the tendons, higher incidence of:
 • Depigmentation
 • Fat necrosis/skin thinning
 • Subcutaneous tissue atrophy
 – In diabetics, short-term increase in blood glucose
 – Corticosteroid flare (pain after injection)
• DeQuervain’s of Pregnancy/Lactation
 – Thought due to the increased fluid shifts/edema secondary to hormonal fluctuation
 – Generally responds to splinting and corticosteroid injection
 – One study showed nearly 100% response to steroid injection, with less responsiveness to splinting – however, symptoms resolved at the end of lactation universally

• Surgical Treatment of DeQuervain’s
 – Indicated only after failure of conservative treatment
 – Division of the fibro-osseous sheath over the first dorsal compartment
 – Care must be taken to identify all slips of BOTH APL and EPB tendons

• Complications of Surgery for de Quervain’s Tenosynovitis
 – Injury to superficial radial nerve branches
 – Volar subluxation of the first dorsal compartment tendons
 – Incomplete release of tendon sheath due to a separate fibro-osseous tunnel/multiple slips of APL
• Intersection Syndrome
 – Pain and swelling due to entrapment of the second dorsal extensor compartment, which contains:
 • Extensor carpi radialis longus (ECRL)
 • Extensor carpi radialis brevis (ECRB)
 – Location is approximately where the first dorsal compartment tendons cross
 – Often seen in rowers and weightlifters

• Intersection Syndrome
 – Previously thought to be due to irritation of the crossing APL/EPB tendons over the wrist extensors
 – Studies at surgery show the problem is entrapment of the second dorsal compartment
• Intersection Syndrome - Evaluation
 – Tenderness to palpation over dorsal/distal/radial forearm
 – Some pain with wrist flexion/extension
 – Crepitation or “wet leather” feel over wrist extensors with wrist flexion/extension

• Intersection Syndrome - Treatment
 – Conservative
 • Splinting of the wrist - cock-up wrist splint
 • Corticosteroid injection(s)
 – Operative
 • Longitudinal incision to release the second dorsal compartment – retinaculum is left open

• Other Tendinopathies
 – EPL
 • Tendon entrapment rarely seen
 • Associated with wrist trauma (nondisplaced distal radius fractures), inflammatory arthropathy
 • Often leads to attritional rupture
 – Prior to rupture, tendon release and subcutaneous transposition above retinaculum may be preventive
 – If ruptured, reconstruction required to restore function (preferably EIP to EPL transfer)
• EPL tendon rupture after distal radius fracture

• Other Tendinopathies
 – ECU
 • One cause of ulnar sided wrist pain
 • May involve volar instability of the tendon (ECU snapping)
 • Generally responds to splinting and corticosteroid injection(s)
 • Debridement (and sheath reconstruction with a slip of retinaculum) helpful in refractory cases with instability

• ECU tendinopathy - MRI
ECU calcific tendinitis

• Other Tendinopathies
 – FCR – occurs due to inflammation in tight fibrous sheath at the wrist
 • Generally responsive to splinting, steroid injection
 – FPL – seen in rheumatoid patients due to inflammatory changes at distal scaphoid
 • If ruptured (Mannerfelt syndrome), tendon transfer (FDS ring) or thumb IPJ fusion needed to restore function

• Corticosteroid injection for FCR tendinopathy
• Summary
 – De Quervain’s tenosynovitis is more common in women and generally responds well to splinting and steroid injection
 – Surgical treatment is indicated for recalcitrant cases
 – Other tendinopathies are generally treated conservatively

Elbow Tendinopathies

• Lateral Epicondylitis
 – One of the most common overuse syndromes encountered in the upper extremity
 – Known as tennis elbow after being described by Morris in 1882 to be caused by lawn tennis
 – Tendinosis of the components of the extensor origin
• Epidemiology
 – 1-3% of population will experience lateral epicondylitis in their lifetime
 • Equal male/ female incidence
 • Usual onset between age 35-50

• Epidemiology
 – 5-10% can be attributed to playing tennis
 • 10-50% of regular players
 • Risk increases 2-3.5x playing > 2 hr/ week
 • Age > 40 increase 2x for women, 4x for men
 • Associated with hard surface, poor stroke mechanics, improper grip and racquet weight

• Epidemiology
 – Risk factors
 • Manual labor with heavy tools
 • Repetitive activities
 • Dominant arm
 • Poor coping mechanism
 • Depression
• Epidemiology: Natural History
 – 80% of newly diagnosed lateral epicondylitis will be symptomatically improved at one year
 – 4-11% patients will require surgery
 • Manual labor
 • Dominant arm
 • Poor coping mechanism
 • Longer duration of pain

• Epidemiology: Natural History
 – Long Term follow-up at 1 and 5 years (Binder and Hazelman Br J Rheum 1983)
 • 26% recurrence rate
 • 40% minor long term discomfort
 – Natural history confuses objective outcomes assessment of any treatment type

• Anatomy: Lateral Epicondyle
 – Serves as origin of
 • Extensor Carpi Radialis Brevis (ECRB)
 • Extensor Digiti Commninus (EDC)
 • Extensor Digiti Quinti (EDQ)
 • Extensor Carpi Ulnaris (ECU)
 • Superficial head of supinator (deep)
 • Lateral Collateral Ligament Complex (LUCL)
 • Anconeus
• Anatomy
 – Common extensor origin (CEO)
 • A confluence of the origins of the ECRB, EDC, EDQ, and ECU.
 • At epicondyle, fibers of the ECRB & EDC cannot be distinguished
 – ECRL has muscular origin proximal to epicondyle along supracondylar ridge

• Microanatomy: Lateral Epicondyle
 – Schneeberger and Masqualet (CORR 2002)
 • Microvascular anatomy in 12 elbows
 • Undersurface of ECRB origin is avascular
 – Bales et al (JSES 2007)
 • 6 cadaver elbows
 • 2 hypovascular areas of the common extensor origin
 – At the proximal lateral epicondyle
 – 2-3 cm distal to the undersurface of the ECRB origin

• Pathoanatomy
 – Lateral epicondylitis begins as a microtear
 – Inadequate healing response
 – Always involves the ECRB
 • Deep and more superior fibers
 – EDC involved in 35-50% of operative cases (Petrone and Nirschl)
• Pathoanatomy
 – Histologically proven tendinosis (Nirschl)
 • Disordered collagen
 • Mucoid degeneration
 • Angiofibroplastic hyperplasia
 – No inflammatory component

• Pathoanatomy
 – ECRB crosses both elbow and wrist
 • Under tension with elbow extended in all conditions of power grip
 • Leads to increased shear stresses at the origin (Briggs and Elliot, Arch Anat 1985)
 – ECRB undersurface rubs between outer edge of capitellum and ECRL with the elbow in extension (Bunata et al, JBS 2007)

• Clinical Presentation
 – Pain over the lateral aspect of the elbow
 • Localized at or just distal to epicondyle
 • Sharp/burning in nature
 • Radiation along course of wrist extensors
 • Worsened by active wrist extension or forearm rotation with elbow extended
 – Weakness of grip
 – Difficulty grasping or lifting items
Clinical Presentation
- Night pain present in severe cases
- Stiffness upon wakening may be described by patient
- Pain with even light daily activities
 - Shaving
 - Picking up coffee cup

Physical Examination
- Assessment of grip strength
 - Compare to unaffected side
 - Baseline objective measure of severity of lateral epicondylitis
 - Can be tested serially to assess response to treatment

Clinical Presentation
- Onset of pain is usually insidious
- Can be associated with repetitive activities
- Can be associated with acute traumatic episode
 - Direct trauma to lateral elbow
 - After lifting an object
Physical Examination

- Assess for warmth or erythema
- Point tenderness just distal and anterior to lateral epicondyle
- Examine for tenderness in radial tunnel

Assess anconeus triangle for synovitis or effusion

Physical Examination

- Assess ROM of elbow & shoulder
- Fluid elbow range w/o mechanical sx or clicking
- Limited shoulder IR leads to increased stress of ECRB with wrist flexion and lateral epicondylitis (Laban et al, Am J Phys Med Rehab 2005)
• **Physical Examination**
 – Pain with resisted wrist extension
 – Pain with resisted supination
 – Long finger extension test (RTS)
 – Pain with passive wrist and digital flexion

• **Physical Examination**
 – Pivot shift test (LUCL instability)
 • Forearm fully supinated
 • Valgus stress to elbow as it is moved from fully extended to flexed
 • Apprehension and rarely frank subluxation seen

• **Differential Diagnosis**
 – Cervical Radiculopathy
 – Radial Tunnel Syndrome
 – Intra-articular elbow pathology (11-69%)
 • Arthritis
 • Fracture
 • Synovitis
 • Loose body
 • Posterolateral plica
 – Posterolateral elbow instability
• **Differential Diagnosis:**
 Clues from patient history
 – Electrical symptoms
 • Radiculopathy
 • Radial tunnel syndrome
 – Clicking or locking
 • Mechanical joint derangement
 – Joint “apprehension”
 • Posterolateral joint instability

• **Differential Diagnosis**
 – Radial Tunnel Syndrome (RTS)
 • Compression of the posterior interosseous nerve (PIN) in the radial tunnel
 • Discomfort is vague
 • Tenderness on exam is supinator muscle
 • Occurs in 5-10% of pts with lateral epicondylitis
 • Can differentiate with diagnostic PIN blockade

• **Differential Diagnosis**
 – Posterolateral Plica (Ruch et al, *JSES* 2006)
 • 10 patients initially Dx’d with epicondylitis
 • Point of tenderness posterior to epicondyle at the posterior radiocapitellar joint
 • Subtle mechanical sxs (e.g., clicking)
 • Arthroscopic resection of the synovial plica led to complete resolution of sxs
• Imaging
 – Radiographs
 • Rule out intra-articular pathology
 • Radiocapitellar view
 • Calcification around extensor origin
 – Pomerance (JSES 2002)
 • 245 radiographs in LE patients
 • 16% incidence of abnormality seen
 • Findings influenced management in only 2 cases

• Imaging: MR findings
 – Edema and thickening of origin
 – Increased T2 signal
 – Extent of tendon involvement correlates with operative findings
 – May be negative

• Ultrasound findings
 – Hypoechogenic areas
 – Calcifications
 – Intrasubstance tears and thickening
 – Findings are moderately sensitive, but variably specific
 – Very dependent on operator’s experience
• Treatment Goals
 – Relief of pain
 – Enhance healing of ECRB
 – Most patients do not require operative treatment
 • Only 7% of patients required debridement (Nirschl and Petrone, JBJS 1979)
 • Only 5% treated operatively (Jobe and Ciccotti, JAOS 1994)

• Treatment
 – Activity modification
 • Limit lifting and repetitive grasping
 • Lifting with elbow flexed or forearm supinated need not be restricted
 • No vibrational tools
 • Equipment modification
 – Restring racquet
 – Change grip size
 – No gloves (they increase gripping force)

• Nirschl Exercises
 – Focuses on increasing strength, flexibility and endurance
 – Stretch wrist extensors with elbow extended
 – Progress to isometric and concentric strengthening
 – Resume activities with increasing duration
• Treatment: Non-operative
 – Physical Therapy
 • Cross friction massage
 • Eccentric strengthening
 • Ultrasound
 • Iontophoresis
 – NSAIDs (Oral and topical)

• Outcomes: NSAID’s
 – Green et al (Cochrane Review 2001)
 • Some evidence to support short term efficacy of topical NSAID’s
 – Decreased pain
 – Increased patient satisfaction
 • No evidence to support the efficacy of oral NSAID’s

• Treatment: Orthosis
 – Counterforce brace
 • Theoretically limit muscle expansion
 • Create a new more distal muscle origin
 • Less tensile stresses seen by injured tendon
 – Wrist cock-up splint
 • Diminishes contraction of the wrist extensors
• Outcomes: Orthotics
 – Struijs I (Cochrane Review 2002)
 • 5 RCT’s reviewed
 • No orthotic device was found to be superior to another
 • No benefit of orthotic seen when compared with other treatment (PT/NSAIDs/steroid injections)

• Treatment: Needles
 – Corticosteroid injection
 – Needle therapy without medication
 – Autologous blood injection
 – Acupuncture
 – Viscosuplementation
 – Botulinum toxin (Botox)

• Corticosteroid Injection
 – Treat the acute pain
 – Allow more rapid and pain free rehabilitation
 – Short term gains in pain relief seen, but no long term differences in outcome seen
• Corticosteroid Injection
 – Hay et al, BMJ 1999
 • RCT of 160 pts Rx’d with injection, naproxen or oral placebo
 • 4 week improvement 92%, 57%, and 50%
 • No significant difference in one year follow-up
 – Henket et al, ASSH 2007
 • RCT of 64 pts receiving corticosteroid or placebo injection
 – Injection did not improve pain relief or perceived disability at 1 or 6 months follow-up
 – Perceived disability correlated with measures of depression or poor coping mechanisms

• Corticosteroid Injection
 – Bisset et al, BMJ 1996
 • RCT of 196 pts receiving injection, 8 PT sessions, or “wait and see”
 • Injections had better outcome at 6 weeks, but higher recurrence rate and worse long term outcome
 – ECRB weakened?
 – Reinjured during pain free period?

• Local Needle Therapy
 – Altay et al, CORR 2002
 • RCT of 120 patients received corticosteroid injection vs injection of local anesthetic only
 • Repeated passes of needle (18 gauge)
 • 90% excellent results both groups at 2m and maintained through 1 year follow-up
• Autologous Blood Injection
 – Edwards and Calandruccio, JHS 2003
 • Injection of 2ml of blood in 28 pts
 • 79% totally relieved of pain at final follow-up
 – Response achieved by 8 weeks
 • 9 of 28 required 2 or 3 injections
 • Authors propose that the injection induces healing response through humoral and cellular mediators

• Acupuncture
 – May confer analgesia through modulation of beta endorphins
 – Effect can be blocked by naloxone

• Outcomes: Acupuncture
 – Green et al (Cochrane Review 2002)
 • Examined 4 randomized control trials
 • No evidence to support or refute the use of acupuncture for lateral epicondylitis
 • Needle acupuncture did appear to afford some short term pain relief (less than 24 hrs)
• Botulinum Toxin
 – Causes temporary muscle paralysis by presynaptic acetylcholine blockade
 – Hypothesis is that the paralysis allows torn ECRB muscle time to heal
 – 3 RCT’s reported

• Botulinum Toxin
 – Wong et al, Ann Int Med 2005
 • 60 patients single injection
 • Significant reduction in pain seen
 • No change in grip strength
 • Reversible weakness in finger extension observed

• Botulinum Toxin
 – Placzek et al, JBJS 2007
 • 130 patients received single injection
 • Improvement as early as 2 weeks
 – Clinical findings
 – Subjective patient assessment
 • No change in grip strength seen
• Extracorporeal Shock Wave Therapy (ESWT)
 – Utilized in other enthesopathies
 – Pulsed sonic waves dissipate energy at the interface of substances with differing acoustic impedance
 – Unclear mechanism of action
 • Blockage of nociceptors?
 • Increase cell permeability to induce repair?

• Outcomes: Shock wave therapy
 – Buchbinder et al (Cochrane Review 2005)
 • 9 RCT with 1006 pts vs placebo
 – ESWT offered little or no benefits with respect to pain or function
 • 1 RCT with 93 pts vs steroid injection
 – Steroid injection was more effective than ESWT

• Surgical Treatment
 – Indicated for patients who fail 6-12 months of conservative therapy
 – Usually only 4-11% of people will require surgical intervention
 – Long history of multiple techniques with good results
• Surgical Treatment
 – Techniques
 • Resection of epicondyle
 • Resection of annular ligament (Bosworth)
 • Distal tendon lengthening (Garden 1961)
 • Joint Denervation
 – Current trends in treatment shaped by understanding of the pathologic tissue involved

• Surgical Treatment
 – Open debridement of the extensor origin
 • With or without epicondylectomy
 • Need for arthrotomy?
 – Percutaneous extensor tendon release
 – Arthroscopic debridement

• Open Tendon Debridement
 – Lateral incision over and just distal to epicondyle
 – Incision of fascia in line with fibers
 – Identification of the pathologic fibers of the ECRB (+ EDC)
 – Resection of the diseased tissue
• Open Tendon Debridement
 – Some authors will drill or decorticate epicondyle to induce new blood supply
 • No benefit of drilling (Khasaba, *Br J Sports Med* 2001)
 – Repair the ECRB to epicondyle (Jobe)
 – Allow the ECRB to lengthen without direct repair (Nirschl and Pettrone)
 • Feel it is densely adherent to ECRL

• Open Tendon Debridement
 – Nirschl & Pettrone, *JBJS* 1979
 • 88 pts
 • 97.7% improved
 • 10-12% with minor pain
 – Kerlan-Jobe Clinic
 • 60 pts
 • 94% dramatic improvement
 • 36% limited with heavy lifting
 • 15% grip strength deficit
 • 100% had deficit on isokinetic testing

• Percutaneous Release
 – Area of epicondyle infiltrated with local anesthesia with epinephrine
 – 11 blade used to sweep around the anterior surface of the epicondyle
 – Keeps dissection less than 5 mm
 – Progress inferiorly until palpable defect felt
 – Patient selection
 • Landmarks obscured on larger arms
• Percutaneous release
 – Dunkow et al, JBJS Br 2004
 • Prospective RCT of 47 elbow open versus percutaneous release
 – Percutaneous Release
 » Higher patient satisfaction
 » Better DASH scores
 » Improvement in sporting activities
 » RTW 3 weeks earlier

• Arthroscopic Debridement
 – Feasibility described by Kuklow and Baker in Arthroscopy (1999)
 – Insufflate joint with 30 cc saline
 – Proximal medial portal first placed
 – Proximal lateral portal placement guided by the pathology
 – Can address concomitant articular pathology

• Arthroscopic Debridement
 – Arthroscopic shaver used to debride frayed capsule and then release the torn ECRB
 – Arthroscopic burr can be used to decorticate lateral epicondyle
• Arthroscopic Debridement
 – Baker et al, JSES 2002
 • 42 pts
 • 95% rated as better or much better at final follow up
 • Grip strength 96% of contralateral side
 • Average RTW 2.2 week
 • 69% had intra-articular pathology

• Arthroscopic Debridement
 – Peart et al, AJO 2004
 • Compare 42 open to 29 arthroscopic debridement by a single surgeon
 • 70% good/ excellent at 6 months in both
 • Return to work faster in arthroscopic group (2.9 versus 1.7 months)

• Outcomes: Surgical Treatment
 – Lo and Safran, CORR 2007
 • English literature for outcome of surgery (33)
 – Only 2/33 articles had level I evidence
 – Only 1/33 articles had level II evidence
 – 28/33 were level IV evidence
 • “…no technique appears superior by any measure. Therefore, until more randomized, controlled trials are done, it is reasonable to defer to individual surgeons regarding experience and ease of procedure. “
• Outcomes Surgical
 – Szabo et al, *JSES 2006*
 • Retrospective comparison of open, arthroscopic and percutaneous treatment
 • No significant difference seen in any outcome measure or time to recovery
 • Intra-articular pathology addressed in 44% of arthroscopic cases

• Complications
 – Iatrogenic posterolateral instability
 – Fistula
 – Neuroma of the posterior cutaneous nerve
 – Reactive bone formation
 – Injection
 • Skin hypopigmentation
 • Fat atrophy

• Failed Surgery
 – Re-assess diagnosis
 • RTS
 • Posterolateral instability (Hastings)
 • Posterolateral plica
 – Consider revision surgery
 • Organ et al, *Am J Sports Med 1997* found high % of incomplete excision of pathologic tissue
 • Radial tunnel release?
 • Coverage with anconeus flap
• Lateral Epicondylitis: Summary
 – Common source of elbow pain
 – Results from tendinopathy involving the origin of the ECRB
 – Differential diagnosis must be considered
 – Conservative management is usually successful
 – Operative management reserved for patients who fail of conservative management

• Medial Epicondylitis
 – An overuse syndrome
 • Most common cause of medial elbow pain
 • Also known as “golfer’s elbow”
 – Originally described by Morris in 1882
 – Tendinosis of the flexor pronator origin

• Epidemiology
 – Prevalence of 0.3% in population studies (Shiri et al, Am J Epidemiology 2006)
 • 5-7x less common than lateral epicondylitis
 – Slight male predilection (1.5-2:1)
 – Peak incidence: 3rd - 5th decade of life
• Epidemiology: Risk Factors
 – Sports (implicated in 10-20% of cases)
 • Golf, pitching, rowing, javelin, Tennis (serve)
 – Occupational
 • Forceful activities
 • Repetitive Motion
 – Other
 • Smoking
 • Obesity
 • Low social support

• Epidemiology: Natural History
 – Many believe, like lateral epicondylitis, medial epicondylitis has a significant rate of spontaneous resolution
 – Descatha et al, J Occ Environ Med 2003
 • Annual incidence of 1.5%
 • Prevalence 4-5%
 • 81% cure rate noted at 3 year follow-up

• Anatomy: Medial Epicondyle
 – Anterior face serves as the origin of
 • Pronator teres (PT)
 • Flexor carpi radialis (FCR)
 • Palmaris longus (PL)
 • Flexor digitorum superficialis (FDS)
 • Flexor carpi ulnaris (humeral head, FCU)
• Anatomy: Medial Epicondyle
 – Ulnar nerve in cubital tunnel
 – Medial collateral ligament
 • Main valgus stabilizer of elbow in flexion
 • Anterior oblique component is most important

• Pathoanatomy
 – Felt to be similar to lateral epicondylitis
 • Begins as a microtear
 • Inadequate healing response
 – Most commonly involves PT and FCR
 – FDS, PL, and FCU less commonly involved

• Pathoanatomy
 – Histologically proven tendinosis (Nirschl)
 • Disordered collagen
 • Mucoid degeneration
 • Angiofibroplastic hyperplasia
 – No inflammatory component
• Pathomechanics
 – Pitching
 • Valgus forces exceed tensile strength of medial muscle origin
 • Forces transmitted to muscles first and then the medial collateral ligament
 • Repetitive loads on the medial elbow can produce pathologic changes at the tendon origin that lead to tears

• Clinical Presentation
 – Onset of activity related pain over the medial elbow and proximal ulnar forearm
 • 60% occurs in dominant arm
 • 30% onset after acute trauma
 • 70% insidious onset
 – Pain worsened with repetitive, forceful forearm pronation and/or wrist flexion

• Clinical Presentation
 – Night pain present in severe cases
 – Stiffness upon wakening may be described by patient
 – Pain with even light daily activities
 – Pain can progress to pain at rest
• Physical Examination
 – Assess for warmth, erythema, swelling
 – Point tenderness at or just distal and anterior to palpable medial epicondyle

• Physical Examination
 – Assess ROM
 • Usually normal
 • No mechanical Sxs
 • Valgus instability
 – Assess Ulnar Nerve
 • Elbow flexion test
 • Tinel’s
 • Distal motor/sensory exam
 • Can coexist
 • Subluxating ulnar nerve

• Physical Examination
 – Pain increased with
 • Resisted wrist flexion
 • Resisted pronation
• Physical Examination
 – Assessment of grip strength
 • Compare to unaffected side
 • Baseline objective measure of severity of medial epicondylitis
 • Can be tested serially to assess response to treatment

• Differential diagnosis
 – Cervical Radiculopathy
 – Ulnar neuropathy at elbow (can co-exist)
 – Ulnar nerve subluxation
 – Snapping medial head of the triceps
 – Medial collateral ligament instability
 – Medial antebrachial cutaneous nerve neuroma
 – Elbow arthritis

• Differential Diagnosis:
 Clues from patient history
 – Electrical symptom
 • Radiculopathy
 • Ulnar neuropathy
 • Neuroma of medial antebrachial cutaneous n.
 – Clicking or locking
 • Mechanical joint derangement
 – Joint “apprehension”
 • MCL instability
• Imaging
 – Radiographs
 • Rule out intra-articular pathology
 • Calcification around flexor origin
 • Medial olecranon traction spur in throwers
 • Pomerance (JSES 2002)
 – 245 radiographs in LE patients
 – 16% incidence of abnormality seen
 – Findings influenced management in only 2 cases

• Imaging: MR
 – Only for challenging cases
 • Concomitant ligament injury
 – MR Findings (Kijowski and Desmet Skel. Radiol. 2005)
 • Thickening and edema in flexor origin
 • Increased signal on T2 most specific finding

• Ultrasound findings
 – Hypoechogenic areas
 – Calcifications
 – Intrasubstance tears and thickening
 – Findings are moderately sensitive, but variably specific
 – Very dependent on operator’s experience
• Treatment Goals
 – Relief of pain
 – Enhance healing of flexor pronator origin
 – Allow resumption of occupational and avocational activities
 – 90-95% of patients will respond to conservative treatment

• Treatment
 – Activity modification
 • Limit lifting, repetitive gripping and twisting
 • No vibrational tools
 • If possible, don’t use gloves
 – Increase the force required to control object
 • Change golf swing/tennis serve
 – Assessment by pro

• Nirschl Exercises
 – Focuses on increasing strength, flexibility and endurance
 – Stretch wrist flexors and pronator w/ elbow extended
 – Progress to isometric and concentric strengthening
 – Resume activities with increasing duration
Medial Epicondylitis

- **Treatment:** Non-operative
 - Physical Therapy
 - Cross friction massage
 - Eccentric strengthening
 - Ultrasound
 - Randomized double blinded placebo controlled trial for ME & LE
 - 6 Rx’s with dexamethasone
 - Better VAS pain scores at one month
 - Short term study

- **Medial Epicondylitis**

- **Treatment:** Non-operative
 - NSAIDS (Oral and topical)
 - Frequently used
 - Only topical NSAID’s shown to have ST efficacy in randomized controlled trials for lateral epicondylitis
 - Uncertain mechanism given lack of histological findings of inflammation

- **Medial Epicondylitis**

- **Treatment:** Orthosis
 - Counterforce brace
 - Theoretically limit muscle expansion
 - Create a new more distal muscle origin
 - Less tensile stresses seen by injured tendon
 - Wrist cock-up splint
 - Diminishes forceful wrist flexion
 - No studies prove efficacy
• Treatment: Corticosteroid Injection
 – Stahl & Kaufman, JBJS 1997
 – Prospective double blind placebo control; n=60
 • Steroid group significantly improved at 6 wk
 • No difference at 3m and 1 year
 • Short term benefit seen, but did not change long term natural
 history of the process
 – Beware of subluxing ulnar nerve
 (Stahl & Kaufman, JHS Br 1997)
 – Beware of medial antebrachial cutaneous nerve
 (Richards & Regan, Can J Surg 1989)

• Autologous Blood Injection
 • 20 patients with medial epicondylitis
 • Ultrasound used to confirm diagnosis and
 direct injection of autologous blood
 • Significant improvement 4 wk & 10 m
 • No control group
 – Success also reported in lateral
 epicondylitis
 • Edwards & Calandruccio, JHS 2003

• Treatment: Lessons
 from Lateral Epicondylitis
 – Needle injection without steroid
 – Shock Wave Therapy (ESWT)
 • Not helpful (Krischek et al, Arch Orhtop Trauma
 Surg 1999)
 – Botulinum Toxin
 – Acupuncture
• Surgical Treatment
 – Required for a small % of patients
 • Natural history favors improvement over a long time (> 1 y)
 • Residual symptoms can persist
 – Failure of non-op treatment for 6-12m
 • Exclusion of other causes of pain
 • Assessment of concomitant ulnar neuropathy

• Surgical Treatment
 – Current trends in treatment shaped by understanding of the pathologic tissue involved
 • Release of flexor pronator origin
 • Debridement of pathological tissue
 • Repair of tendon tissue +/- epicondylar reattachment or epicondylectomy

• Surgical Treatment
 – Open Tendon Debridement
 • Incision just anterior to medial epicondyle
 • Identify and protect MABCN
 • Fascial incison over PT/FCR interval
 • Complete resection of pathologic tissue
 • Protect anterior oblique component of collateral ligament
 • Repair of defect
 – No proven added benefit of epicondylectomy
• Surgical Treatment: Outcomes
 • 50 cases with 37m follow-up
 • All had partial or complete relief
 • 10/48 pts did not return to sport/occupation
 – Vangness and Jobe, JBJS Br 1991
 • 35 cases with 85m follow-up
 • 86% reported no use limitations
 • 97% Ex/G results

• Surgical Treatment: Medial Epicondylitis and Ulnar Neuropathy
 – Frequently co-exist
 – Outcomes limited by severity of pre-op ulnar nerve findings (Gabel and Morrey, JBJS 1995)
 • Consider epicondylar debridement and ulnar nerve decompression for mild neuropathy
 • More severe neuropathy requires nerve transposition
 • Recovery can take more than 6m in 1/3 of patients

• Complications
 – Injection
 • Ulnar nerve
 • Skin hypopigmentation
 • Fat atrophy
 – Surgical
 • Elbow instability
 – MCL injury
 • Ulnar nerve
 – Injury
 – Instability
 • MABCN neuroma
• Summary
 – Medial epicondylitis is a tendinopathy of the flexor pronator origin and a common cause of medial elbow pain
 – Diagnosis is usually possible by history and physical examination
 – Symptomatic relief seen in a majority with conservative treatment
 – Operative treatment is successful in those who fail conservative measures

Finger Stenosing Tenosynovitis – Trigger Finger

• Definition
 – Stenosing tenosynovitis is catching or locking of the finger (‘triggering’)
 – This occurs due to a size mismatch between the flexor tendon and the first annular (A1) pulley
• Anatomy of the Flexor Tendon/Pulley System

• Trigger Finger
 – Nodular, inflammatory enlargement of flexor tendons in the proximal aspect of digital sheath
 – Attempted gliding/pull-through of the tendon through the stenotic A1 pulley is impeded
 – The finger is thus “locked” in flexion
 – Often the finger must be passively extended with a palpable clunk

• Trigger Finger
 – Order of frequency of affected digits
 • Thumb most commonly seen
 • Ring or long finger second most common
 • Index finger
 • Small finger
• Primary or “idiopathic” trigger finger
 – Not associated with any disease process or activity
 – Most common
• Secondary: associated with a systemic disease
 – Diabetes
 – Rheumatoid arthritis
 – Amyloidosis
 – Sarcoidosis
• Infantile form – “congenital” trigger thumb

• Other Causes of Trigger Finger
 – Palmar aponeurosis pulley
 • A transverse condensation of palmar fascia proximal to the flexor sheath
 – Partial FDS laceration; cut slip of tendon “flaps” back and forth in tendon sheath with finger motion
 – Foreign body in tendon sheath

• Pathophysiology
 – Histology studies show fibrocartilaginous metaplasia of the A1 pulley
 – Inner gliding layer of the pulley primarily affected
• Diagnosis
 – Patients present complaining of “locking”, “clicking”, or “clunking” of the finger
 – Tenderness to palpation over the A1 pulley
 – Palpable tender nodule on the flexor tendon
 – Visualize “locked” finger with the PIP/DIP joints in flexion

• Diagnosis
 – Diagnosis most commonly made on physical exam alone
 – Radiographic studies unnecessary
 • X-rays – Rule out bony spur on metacarpal head
 • MRI – Rule out other soft tissue etiologies
 – Confirmatory - signal intensity changes about the flexor tendons (especially edema/fluid/partial tear in T2 weighted images)

• Treatment
 – Conservative
 – Operative
• Conservative Treatment
 – Splinting - hand or finger based splints in both gentle flexion and in extension (most commonly) have been described
 – Helpful for acute symptoms and in combination with other modalities
 – In combination with NSAIDS
 – Occupational therapy - in combination with other modalities
 – However, studies show steroid injection alone is more effective than splints

• Corticosteroid Injection(s)
 – 60-70% of nondiabetic trigger fingers can resolve after a single corticosteroid injection
 – The success rate in diabetics is less than 50%

• Injection Technique
 – Needle is placed at a 50-60 degree angle at the base of the digital flexor crease, through the tendons to bone.
 – Needle is slowly withdrawn, with forward pressure on the syringe until the injectate flows easily into the tendon sheath
Corticosteroid Injection in Diabetics
– Proven hyperglycemic effect of trigger finger injection
– Greatest effect 24 hours after injection
– Glycemic effect lasts up to 5 days
– Diabetics must be warned of this phenomenon prior to injection

Operative Treatment
– Indicated after failure of conservative treatment
– May be a first line treatment in diabetics, in patients with a locked finger that cannot be passively extended, or in those with contractures of the PIPJ (Green type IV)
– Release of the A1 pulley - allows free tendon gliding

Open A1 pulley release
– Transverse incisions in the midpalmar crease, oblique, or longitudinal incisions have all been described
– Division of the A1 pulley performed while protecting digital artery and nerve by retraction
• Open A1 pulley release - longitudinal incision

• Open A1 pulley release - longitudinal incision

• Complications
 – Bowstringing - due to inadvertent A2 pulley injury
 – Digital nerve injury (radial of thumb most common)
 – Recurrence or persistence of triggering
• Triggering despite A1 pulley release
 – Can occur in the chronic trigger finger
 – Constant triggering can cause chronic enlargement of the tendon, which continues to lock through the A2 pulley
 – Resection of the ulnar superficialis slip or removal of a central core of enlarged tendon (reduction flexor tenoplasty) can resolve the issue

Surgical Alternatives
 – Percutaneous release using needle or tenotome
 – Described as an office procedure using a 19-21 gauge needle to longitudinally divide the pulley
 – Complications include incomplete release, superficial tendon and digital nerve injury

Secondary Causes of Trigger Finger
 – Amyloidosis – seen in dialysis patients
 • Generally requires A1 pulley release and tenosynovectomy to remove amyloid deposits
 – Mucopolysaccharidosis – lysosomal storage disease which causes accumulation of glycosaminoglycans
 • Pulley release and tenosynovectomy usually needed
• Secondary Causes of Trigger Finger
 – Rheumatoid arthritis - triggering usually due to synovial inflammation
 – A1 pulley release is NOT INDICATED - this can cause volar drift due to the loss of the pulley
 – The treatment is tenosynovectomy, excision of bulbous tendon or rheumatoid nodules, excision of FDS slip

• Differential diagnosis - Locking MPJ
 – Occurs due to snapping of one of the collateral ligaments over a degenerative osteophyte on the metacarpal head.
 – In contrast to trigger finger, the digit position involves flexion posture of the MPJ with EXTENSION of the PIP/DIP joint
 – Treatment involves excision of the offending osteophyte

• Summary
 – Stenosing tenosynovitis is common and is usually treated initially conservatively in adults
 – Surgical treatment involves release of the A1 pulley
 – In patients with secondary triggering due to systemic disease, tenosynovectomy is often required
Compression Neuropathies: Median Nerve

• Median Nerve Anatomy
 – Originates from lateral and medial cords of the Brachial Plexus
 – Contains fibers from the C6, C7, C8 and T1 nerve roots and sometimes from C5.

• Median Nerve Anatomy
 – Travels down medial arm to the cubital fossa
 – Enters forearm medial to the brachial artery
 – Passes through the two heads of the pronator teres
 – Gives off no branches in the upper arm.
 – Give anterior interosseous branch as it passes under the pronator
• Median Nerve Anatomy: Muscles Supplied in Forearm
 – Median Nerve Proper
 • Pronator Teres (PT) Muscle
 • Flexor Carpi Radialis (FCR)
 • Palmaris Longus (PL)
 • Flexor Digitorum Superficialis (FDS)
 – Anterior Interosseous Nerve (AIN)
 • Flexor Digitorum Profundus (FDP) to index and long fingers
 • Flexor Pollicis Longus (FPL)
 • Pronator Quadratus (PQ)

• Median Nerve Anatomy Forearm
 – Passes between FDS and FDP
 – Gives off the palmar cutaneous sensory branch before it enters the wrist via the carpal tunnel
 • Runs radial to the median nerve and ulnar to the FCR tendon to provide sensation to the radial palm

Median Nerve Anatomy
• Median Nerve Anatomy - Sensation
 - Palmar aspect of thumb, index, long and radial half of ring fingers
 - Dorsal aspect of index, long and radial half of ring fingers distal to the PIP joint

• Carpal Tunnel Anatomy
 - Contents
 • Median nerve
 • FDP index-small
 • FDS index-small
 • FPL
 - Borders
 • Transverse carpal ligament (TCL)
 - Roof of carpal tunnel
 - Connects from the pisiform and hook of the hamate to the scaphoid tuberosity and triangular facets.
 - Ligament is confluent with antebrachial fascia of forearm
 • Carpus forms radial and ulnar borders and floor

• Median Nerve Anatomy
 - Variations in the take off of the motor branch of the median nerve
 • Distal to the ligament (extraligamentous)
 • Branching proximally and turning around the ligament distally (subligamentous)
 • Coursing through the ligament (transligamentous)
 • Rarely the motor branch comes off the ulnar aspect of the median nerve.
• Median Nerve Anatomy
 Muscles Supplied in Hand
 – Motor Supply (LOAF)
 • Lumbricals
 – Index
 – Long
 • Thenar Muscle
 – Opponens Pollicis
 – Abductor Pollicis Brevis
 – Flexor Pollicis Brevis
 (Superficial 1/2)

• Specific Motor Functions
 – Testing of FPL for anterior interosseous nerve lesion
 – Testing of Index FDP for anterior interosseous nerve lesion
 – Testing of Abductor Pollicis Brevis via palpation of APB with resisted opposition

• Sensory Testing
 – Threshold test
 • first measurable change in objective sensory perception
 • vibratory threshold and light touch
 – Density tests
 • test large myelinated fibers
 – static 2 point discrimination - slow adapting fibers
 – moving 2 point discrimination - fast adapting fibers
 • changes occur later than threshold tests
 – Subjective comparison

 Semmes Weinstein Monofilament
 Light Touch Testing
 Two Point Discrimination Testing
• Diagnostic Imaging Radiographs
 – Radiographic imaging not always required in diagnosis of carpal tunnel syndrome
 – May be helpful in cases of
 • Higher level lesions
 – Radiographs of the distal humerus can identify a supracondylar process in cases of pronator syndrome
 • Patients with past history of trauma
 – Radiographs of the wrist can identify old fractures of the distal radius, carpal instabilities, and wrist arthritis which may contribute to carpal tunnel syndrome.
 • Patients with inflammatory arthropathy

• Carpal Tunnel Syndrome
 – Most common compression neuropathy of the upper extremity
 – Etiology
 • Most cases are idiopathic
 • Women more than men
 • Incidence increases with age

• CTS - Systemic

<table>
<thead>
<tr>
<th>Rheumatoid arthritis</th>
<th>Hemophilia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diabetes</td>
<td>Multiple myeloma</td>
</tr>
<tr>
<td>Hypothyroidism</td>
<td>Obesity</td>
</tr>
<tr>
<td>Gout</td>
<td>Renal failure</td>
</tr>
<tr>
<td>Amyloidosis</td>
<td>Pregnancy</td>
</tr>
<tr>
<td>Osteoarthritis</td>
<td>Menopause</td>
</tr>
<tr>
<td>Alcoholism</td>
<td>Mucopolysaccharidosis</td>
</tr>
</tbody>
</table>
• CTS - Mechanical

<table>
<thead>
<tr>
<th>Condition</th>
<th>Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tenosynovitis</td>
<td>CMC arthritis</td>
</tr>
<tr>
<td>Ganglion</td>
<td>Fracture</td>
</tr>
<tr>
<td>Median artery</td>
<td>Acromegaly</td>
</tr>
<tr>
<td>Abnormal muscle</td>
<td>Tumor</td>
</tr>
</tbody>
</table>

• CTS - Pathophysiology
 – Normal pressure within carpal tunnel is 2.5 mmHg
 – Decrease in epineural blood flow and edema occurs with pressure 20-30 mmHg
 – Nerve conduction diminishes at pressures >30 mmHg
 – Continued or extended pressure elevation may result in complete median nerve block
• CTS - Symptoms
 – Numbness, paresthesia in median distribution
 • Increased at night or with work
 • Relief with dependency, shaking hand
 • May include ulnar digits
 – Palm, volar wrist
 • May involve dorsal MP area
 • May radiate to shoulder
 – Swelling of hand
 – Weakness, clumsiness, dropping objects

• CTS - Diagnosis

<table>
<thead>
<tr>
<th>Test</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phalen</td>
<td>10-88%</td>
<td>47-100%</td>
</tr>
<tr>
<td>Tinel</td>
<td>26-79%</td>
<td>40-100%</td>
</tr>
<tr>
<td>Durkan</td>
<td>87%</td>
<td>90%</td>
</tr>
</tbody>
</table>
| Semmes-Weinstein | Up to 91% | Up to 80% | Palumbo + Szabo, Hand Clin, 18:269-77, 2002

Physical Examination - Tinel's sign
Physical Examination – Phalen’s test

• CTS - Electrodiagnosis
 – Motor latency 4.5 ms or 1 ms > opposite hand
 – Sensory latency 3.5 ms or 1 ms > opposite hand
 – Median-ulnar latency difference ≥0.5 ms

• CTS - Staging
 – Mild
 • Duration < 1 year
 • Intermittent numbness
 • Normal sensory testing
 • No weakness or atrophy
 • Minimal NCV changes, no denervation
 – Moderate
 • Continuous numbness, paresthesias
 • Increased threshold on sensory tests
 • Increased distal motor latency
 – Severe
 • Persistent loss sensory + motor function
 • Thenar atrophy
• CTS - Treatment
 – Nonsurgical
 • Initial treatment for most idiopathic cases
 – Splint
 – Corticosteroid injection
 – TVK B6
 – Diuretics
 – Surgical carpal tunnel release
 • Acute CTS
 – from trauma or infection
 • Chronic CTS
 – With denervation in APB
 – Pronounced sensory loss
 – Unresponsive to nonoperative measures
CTS – Predictors of Outcome with Conservative Treatment

• Factors – Age>50 yrs, Duration sx> 10 mo, Constant paresthesias, Stenosing tenosynovitis, Phalen’s + in <30 s (Kaplan et al, JHS 15B, 1990)

<table>
<thead>
<tr>
<th>Factors Present</th>
<th>% Success</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>66</td>
</tr>
<tr>
<td>1</td>
<td>40</td>
</tr>
<tr>
<td>2</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

• CTR – Anatomical Changes
 – 25% volume increase
 – Oval shape becomes circular
 – Median nerve larger, rounder, displaced palmarly
 – Guyon’s canal changes from triangular to oval

• Surgery – Open v Endoscopic
 – 2-3 week earlier return to work with endoscopic versus open CTR
 – No substantial difference in final outcome
 • Brown et al, JBJS (Am) 1993.
 • Trumble et al, JBJS (Am) 2002.
• CTR – Predictors of Outcome
 – Longterm failure
 • Weakness or atrophy of APB
 • Predisposing condition
 • No relief from initial steroid injection
 – Longterm success
 • 100% of those with >6 months relief from injection and splinting
 Kulick et al, JHS A 1986

• Proximal Median Compression
 – Cervical spine
 – Thoracic outlet
 – Forearm
 • Pronator teres
 • Sublimis
 • Lacertus fibrosis

• CTS – Double Crush Syndrome
 – 70% of 115 patients with proven entrapment neuropathy had evidence of cervical root lesion
 – “Neural function is impaired because single axons, having been compressed in one region, become especially susceptible to damage at another site.”
 Upton et al Lancet 2:359,1973
• AIN palsy - History
 – Dull pain proximal forearm
 – Often follows muscular exertion
 – Occasional direct trauma
 – Inability to pinch thumb and index

• AIN - Anatomy
 – Innervates FPL, FDP (IF+/−MF), PQ
 – Take off distal to PT in 90%
 – Martin-Gruber anastomosis from AIN in 7%
 – “Median hand” – all profundi from AIN
 – Compression from musculo-tendinitis anomalies (thrombosed vessels, bicipital bursa)

• AIN - Physical Exam
 – Isolated FPL or FDP (IF) in partial syndrome
 – Usual - FPL + FDP (IF) + PQ
 • + ulnar intrinsics if Martin-Gruber anastomosis
 • + FDP MF, RF, SF in “Median hand”
 – Tinel’s, tenderness at site
 – No sensory abnormality
AIN Syndrome – EMG/NCV
- Abnormal latency elbow to pronator quadratus (nl 5.1 ms +/-0.9 ms)
- 7/7 – Prolonged duration of action potential (Nakano, 1977)
- 18/22 – EMG findings of denervation (Hill, 1985)

Median Nerve Compression
- Differential Diagnosis - AIN
 - Complete
 • Neurogenic amyotrophy (Parsonage Turner)
 – Severe proximal pain
 – Serratus anterior, supra/infraspinatus, deltoid
 • Median compression in axilla (Spinner, 1976)
 - Partial
 • Tendon rupture (RA)
 • Stenosing or adhesive tenosynovitis – EMG nl, pain at site of pathology
• AIN - Treatment
 – Splint +/- NSAIDs
 – Explore unrelieved paralysis at 6-12 weeks

• AIN Syndrome – Outcome

<table>
<thead>
<tr>
<th>Reference</th>
<th>Recovery after surgery</th>
<th>Spontaneous recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spinner, 1970</td>
<td>6-12 weeks</td>
<td>3 wks-14 mo</td>
</tr>
<tr>
<td>Hill, 1985</td>
<td>8/24 @ 12; 16/24 @ 2 yrs</td>
<td>4 wks-2.5 yrs</td>
</tr>
<tr>
<td>Nakano, 1977</td>
<td>9-17 mo</td>
<td>3-18 mo</td>
</tr>
</tbody>
</table>

• PTS - History
 – Aching pain proximal forearm
 • Increased by repetitive pronation
 • Proximal +/- or distal radiation
 – Clumsiness
 – Tender mass
 – Occasional numbness, weakness
PTS – Sites of Compression
 – Pronator Teres (82%)
 • 50% fibrous band superficial to nerve
 • 40% fibrous band deep to nerve
 • 20% both
 – Superficialis origin (14%)
 • Fibrous arcade 30%
 – Lacertus Fibrosis (4%)

PTS – Physical Findings
 – Tender PT, +/- mass
 – Tinel’s
 – Phalen’s negative
 – Variable numbness
 • Median digits, palmar triangle
 – Variable weakness
 • FPL, median intrinsics
 – Pain, paresthesias with provocative tests

PTS – Electrodiagnosis
 – EMG/NCV often nl
 – May have segmental decrease motor conduction velocity at PT, denervation if severe
• PTS - Treatment
 – Job alteration
 – Long arm splint, NSAIDs
 – Steroid injection
 – Surgical decompression at all sites

• PTS - Differential Diagnosis
 – Cervical root compression
 – Carpal tunnel syndrome
 – Writer's cramp
 – Medial epicondylitis
 – Elbow joint pathology
• PTS - Results
 – Morris and Peters ’76
 • 5/7 relieved by steroid injection
 – Johnson and Spinner ’79
 • 51 operations (71 pts)
 • All sensory components relieved in 24
 • 4 failures
 – Hartz and Linscheid ’81
 • 36 operations (39 pts)
 • 8 excellent, 20 good

• Summary
 – Median nerve has a predictable pattern of motor and sensory innervation
 – Changes in this pattern are indicative of median nerve pathology
 – Treatment is based on symptoms and level and severity of compression
Stevens et al, Neurology, 2011
The frequency of carpal tunnel syndrome in computer users at a medical facility

- 314 employees surveyed
- 29.6% reported hand paresthesias
- 10.5% met clinical criteria for CTS
- 3.5% confirmed by NCS
- Conclusion: frequency of carpal tunnel syndrome in computer uses is similar to that of the general population

Repetitive Strain Injury

Ireland, Journal of Hand Surgery, 1995

Repetition Strain Injury: The Australian Experience—1992 Update

Damian C. R. Ireland, FRCS, Victoria, Australia
Historical Precedence

- 1713: Ramazzini reported “disease of clerks and scribes” caused by “continuous sitting, repeated use of the hand and strain of the mind.”
- 1833: Sir Charles Bell described “writer’s cramp” with high incidence of “hand spasm.”
- 1882: Robinson described “telegraphist’s cramp” noted similarity to “writer’s cramp.”
 - Incidence increased to 60% of operators after addition in 1908 to schedule of diseases covered by the British Workman’s Compensation Act.
 - After Great Britain and Ireland Post Office Departmental Committee of Inquiry concluded that telegraphist’s cramp was a “nervous breakdown” due to “nervous instability and repeated fatigue,” the incidence subsequently declined.

- 1888
 - “Writer’s cramp”
 - “primarily and essentially nervous system origin, the result of a deranged action in the centres concerned in the act of writing.”
 - “…are of distinctly nervous temperament, irritable, sensitive, bearing overwork and anxiety badly… it is a disease easily imagined by those who have witnessed the disorder.”

Occupational cervicobrachial disorder

- 1960s: OCBD (Japan, Switzerland, Sweden);
 Tension headache and occupational disorder (Finland); occupational complaint number 2101 (German)
 - Occupational cervicobrachial disorder
 - Employees with repetitive stereotyped upper limb exertion and mental stress
 - No preceding trauma
RSI (1980s) CTD (1990s)

- 1980s RSI (Australia)
 - Repetition strain injury
- 1990s CTD (USA)
 - Cumulative trauma disorder

- 1980s, Australia, 34% of Australian workforce afflicted
- RSI-repetitive strain injury
- Clinical presentation
 - Young to middle age
 - Low paying, monotonous, low prestige occupations
 - Deterioration after hand therapy, physiotherapy, and NSAIDs

Australia Historical Context

- Transition period of relative prosperity for Australia
- Inability to work secondary to physical ailment was more socially acceptable than the inability to find work as unemployment started to rise
- Demand for workers decreased as computerization of clerical tasks rose
 - Late 19th century change from feather quill to productive steel nib
Why the meteoric rise of RSI in Australia in 80s

- Rise of medical profession “industrial rehabilitation specialists”—required certification of continuing unfitness for work
- Fear of employer negligence claims “RSI negligence claims”
- Trade union movement—“sufferer’s hand book” dissemination to Public Service (1/3 of Australia total workforce)
- Growth of “paramedical industry”—tactile therapists, consultant mgmnt, ergonomic furniture designers
- Print and electronic media
- Allocation of government resources—entities created that were dependent on the existence of RSI

Demise of RSI

- Australian Medical Journal 1985—emphasized nonphysical origin of RSI, defined as “occupational neurosis”, no localized pathology, no residual permanent disability
- Coordinated and well orchestrated education movement by Australian Hand Surgery Society
- Cooper vs The Commonwealth (1987) —employer not guilty of negligence, the plaintiff had not suffered an injury, awarded all costs against plaintiff

Summary

- Chronic upper extremity overuse can lead to localizable, activity related pain.
- Most cases will resolve with time and non operative management.
- Surgery is successful in the appropriate patient who has failed non operative management.
- For recalcitrant “work related” cases of repetitive stress, a multifactorial approach is warranted addressing individual, psychosocial, and physical factors.
Questions?