Compressive orthotic bracing in the treatment of Pectus Carinatum

Jacob T. Stephenson, MD
David Grant Medical Center and UC Davis Integrated Surgical Residency

Jeffrey J. Du Bois, MD, FACS, FAAP
Chief, Pediatric Surgery
Kaiser Permanente Health System
Sacramento, CA

Disclosure

• I have no relevant financial relationships with the manufacturer of any commercial product or providers of commercial services discussed in this CME activity.
• I do not intend to discuss an unapproved or investigative use of a commercial product or device in my presentation.
• This review was approved by the IRB at both Kaiser Permanente Health System and David Grant Medical Center.
Background

- Pectus Carinatum = protrusion of the sternum due to overgrowth of costal cartilages
- Classic treatment surgical with cartilage resection and sternal osteotomies
- Nonoperative treatment with bracing proposed 1990’s by Haje

Background

- Few case cohorts of successful bracing from Calgary and Cincinnati
- Mostly subjective data of cosmetic improvement
Study Questions

- Is orthotic bracing a successful treatment for pectus carinatum when objectively evaluated by Computed Tomography (CT)?
- Can predictive radiographic markers be obtained from pre-treatment CT?

Methods / Study Group

- 63 Patients with PC over 8 years
- 11 Females (17%); 52 Males (83%)
- Mean age 13.3 ± 2.5
- All patients were offered bracing
- Pre-treatment CT’s obtained
- Follow up is 4-60 months, median 25 months
Treatment Protocol

- Custom fitted clamshell orthoses with extra padding over area of maximal protrusion
- 23 hr daily wear for 3-6 months
- 16 hr daily wear for 3-6 months
- Nightly wear until vertical growth ceased
Results of Treatment

- 17 patients (27%) chose observation
- 46 patients began the protocol, 10 excluded (6 in maintenance phase, 4 lost to follow up)
- 28/36 (78% compliance) completed therapy
 - 24/28 (86% success) with good or excellent cosmetic result by survey and exam
- 8 requested surgery
 - 4 failed due to noncompliance
 - 4 compliant and failed bracing

Pretreatment CT Characteristics

<table>
<thead>
<tr>
<th>Group</th>
<th>N</th>
<th>Age</th>
<th>Haller Index</th>
<th>ASR</th>
<th>Asymmetry Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Successful Bracing</td>
<td>19</td>
<td>13.1</td>
<td>2.05</td>
<td>14.8</td>
<td>1.06</td>
</tr>
<tr>
<td>Observation</td>
<td>11</td>
<td>12.5</td>
<td>2.05</td>
<td>9.2*</td>
<td>1.05</td>
</tr>
<tr>
<td>Failed (Noncompliant)</td>
<td>8</td>
<td>14.4</td>
<td>1.84*</td>
<td>11.7</td>
<td>1.04</td>
</tr>
<tr>
<td>Failed (Compliant)</td>
<td>4</td>
<td>15</td>
<td>2.85*</td>
<td>27.3*</td>
<td>1.23**</td>
</tr>
</tbody>
</table>

* p < 0.05 when compared to successful bracing group
** p < 0.01 when compared to successful bracing group

Table 1: Radiographic indices on pre-treatment chest CT scan, retrospectively grouped by outcome. Data expressed in means, p value calculated by one-tailed Student T-test.
Post-Treatment CT Characteristics with Successful Bracing

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Age</th>
<th>Haller Index</th>
<th>ASR</th>
<th>Asymmetry Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before</td>
<td>10</td>
<td>13.0</td>
<td>2.00</td>
<td>11.99</td>
<td>1.04</td>
</tr>
<tr>
<td>After</td>
<td>10</td>
<td>14.6</td>
<td>2.08</td>
<td>5.53**</td>
<td>1.03</td>
</tr>
</tbody>
</table>

** p < 0.01 when compared to pre-treatment value

Table 2: Results of bracing on radiographic markers. Data expressed in means, p value calculated by one-tailed Student T-test.

Summary

- Compressive orthotic bracing is a successful method of treatment for PC
- Sternal rotation can be significantly improved with appropriate bracing
- Asymmetry of chest diameter is related to concomitant excavatum-type deformity and is less likely to respond to bracing.
Summary – Practice Guidelines

• Symmetric PC is treated with bracing with no additional studies needed
• Asymmetric PC → limited chest CT
• If asymmetry index >1.15 and ASR >20, then primary surgical repair is indicated, with possible postoperative bracing.
• Otherwise, bracing is initiated per protocol.

References