The Role Of Cytoreductive Surgery In The Era Of Targeted Therapy For Metastatic Renal Cell Carcinoma

Robert A. Figlin MD., FACP
Acting Director
City of Hope
Comprehensive Cancer Center

Cytoreductive Surgery

• Review indications and outcomes
• Examine specific subsets of patients where the role of cytoreductive surgery is not clear
 • Elderly
 • T4
 • Bulky nodal disease
• Integration of targeted therapies with surgery
 • Neoadjuvant strategies
Upfront Cytoreductive Surgery Is The Standard Of Care In Properly Selected Patients With Metastatic/Recurrent Renal Cell Carcinoma

Argument For Cytoreductive Nephrectomy

- Palliate local symptoms
- Primary tumor rarely responds to systemic therapy
- Delay time to disease progression
- Improve survival
- Systemic therapy ineffective
- Possibility of spontaneous regression
Argument Against Cytoreductive Nephrectomy

- Surgical morbidity/mortality significant
- Benefits remain unproven (except with interferon)
- Spend majority of time left on this earth recovering from surgery
- Significant disease progression during post-operative recovery period precludes systemic therapy
- Delays initiation of systemic therapy to treat metastatic disease

Results Of Therapy With Primary Tumor In Place

<table>
<thead>
<tr>
<th>Institution</th>
<th>Number of patients</th>
<th>Response Rate</th>
<th>Response in Primary Tumor</th>
<th>Median Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCI</td>
<td>51</td>
<td>6%</td>
<td>0%</td>
<td>13 months</td>
</tr>
<tr>
<td>Netherlands Cancer Institute</td>
<td>16</td>
<td>12.5%</td>
<td>0%</td>
<td>3 months</td>
</tr>
</tbody>
</table>
Cytoreductive Nephrectomy: Retrospective Series

<table>
<thead>
<tr>
<th>Institution</th>
<th>Number of patients</th>
<th>Periop Mortality</th>
<th>Eligible for systemic therapy</th>
<th>Therapy response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albert Einstein</td>
<td>30</td>
<td>17%</td>
<td>23%</td>
<td>13.3%</td>
</tr>
<tr>
<td>NCI</td>
<td>195</td>
<td>1%</td>
<td>62%</td>
<td>18%</td>
</tr>
<tr>
<td>UCLA</td>
<td>63</td>
<td>0%</td>
<td>88%</td>
<td>33.9%</td>
</tr>
<tr>
<td>Tufts</td>
<td>28</td>
<td>0%</td>
<td>93%</td>
<td>39%</td>
</tr>
<tr>
<td>MDACC</td>
<td>66</td>
<td>1%</td>
<td>95.5%</td>
<td>NR</td>
</tr>
</tbody>
</table>

Metastatic RCC
Nephrectomy & Immunotherapy
UCLA 1989-1999

% Survival vs Months

P<0.05

J UROL 166: 1611, 2001
Role Of Cytoreductive Nephrectomy In The Setting Of Metastatic Disease: EORTC 30947

Time to Progression
- IFN + Nx 5 CR, 3 PR (19%)
- IFN 1 CR, 4 PR (12%)

Mickisch G et al., Lancet, 2001

Overall Survival

Role Of Cytoreductive Nephrectomy In The Setting Of Metastatic Disease: SWOG 8949

- IFN + Nx 3 PR (3%)
- IFN 1 CR, 2 PR (4%)

Flanigan R et al., NEJM, 2001
Does the Application of Better Therapy Automatically Mean Better Outcomes With a Multidisciplinary Approach That Includes Cytoreductive Surgery?
Cytoreductive Surgery For Metastatic Renal Cell Carcinoma: Who, When, How Much?

MDACC Experience with Cytoreductive Nephrectomy in the Elderly

- Western society is aging
- Life expectancy is increasing
- The incidence of RCC increases with age and peaks in those aged 75 to 85
- There is an increase in presentation of advanced RCC
- Elderly patients with advanced malignancy are often not offered standard therapy

Kader et al., J Urol 3/07
MDACC Experience with Cytoreductive Nephrectomy in the Elderly

All Cytoreductive Nephrectomies at MDACC 1995-2005

24 ≥ 75 years 380 < 75 years

Outcomes Were Analyzed

Kader et al., J Urol, 3/07

Patient Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Elderly N=24</th>
<th>Younger N=380</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>77.5 (75-84)</td>
<td>57 (14-74)</td>
<td><0.01</td>
</tr>
<tr>
<td>ECOG PS - 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 1</td>
<td></td>
<td></td>
<td>0.29</td>
</tr>
<tr>
<td>- 2</td>
<td>12 (50.0)</td>
<td>219 (57.6)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11 (45.8)</td>
<td>157 (41.3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 (4.2)</td>
<td>4 (1.0)</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>13 (54.2)</td>
<td>273 (71.7)</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>11 (45.8)</td>
<td>107 (28.3)</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Kader et al., J Urol, 3/07
Tumor Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Elderly N=24</th>
<th>Younger N=380</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T Stage - T1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- T2</td>
<td>3 (12.5)</td>
<td>30 (7.9)</td>
<td>0.31</td>
</tr>
<tr>
<td>- T3a</td>
<td>4 (16.7)</td>
<td>53 (13.9)</td>
<td></td>
</tr>
<tr>
<td>- T3b/c</td>
<td>14 (58.3)</td>
<td>124 (32.6)</td>
<td></td>
</tr>
<tr>
<td>- T4</td>
<td>0 (0.0)</td>
<td>158 (41.6)</td>
<td></td>
</tr>
<tr>
<td>Grade</td>
<td></td>
<td></td>
<td>0.38</td>
</tr>
<tr>
<td></td>
<td>4 (2-4)</td>
<td>3 (1-4)</td>
<td></td>
</tr>
<tr>
<td>Size (cm)</td>
<td>9.0 (4.0-25.0)</td>
<td>10.0 (2.0-35.0)</td>
<td></td>
</tr>
</tbody>
</table>

Kader et al., J Urol, 3/07

Perioperative Events

<table>
<thead>
<tr>
<th></th>
<th>Elderly N=24</th>
<th>Younger N=380</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBL (L)</td>
<td>0.58 (0-20)</td>
<td>0.6 (0-19.9)</td>
<td>0.3</td>
</tr>
<tr>
<td>OR Time (H:M)</td>
<td>3:31</td>
<td>3:25</td>
<td>0.96</td>
</tr>
<tr>
<td>Transfusion Rate</td>
<td>11 (45.8)</td>
<td>182 (47.9)</td>
<td>0.58</td>
</tr>
<tr>
<td>Periop Mortality</td>
<td>5 (20.8)</td>
<td>4 (1.1)</td>
<td><0.01</td>
</tr>
<tr>
<td>Length of Stay (d)</td>
<td>6.0 (2-14)</td>
<td>6.0 (1-56)</td>
<td>0.18</td>
</tr>
<tr>
<td>Time to Therapy (d)</td>
<td>30.5 (10-97)</td>
<td>36.0 (7-152)</td>
<td>0.09</td>
</tr>
<tr>
<td>Survival Time (m)</td>
<td>16.6 (0-115)</td>
<td>13.7 (.3-111.3)</td>
<td>0.61</td>
</tr>
</tbody>
</table>

Kader et al., J Urol, 3/07
Survival Curves Comparing Younger to Older Cytoreductive Nephrectomy Patients

P = 0.89 by log-rank

Kader et al., J Urol, 3/07

T4NxM1 Cytoreductive Nephrectomy

Number of Patients 23
Median Age 55 (35-73)
Median Tumor Size 15 cm (7-30)
Sites of Metastases
 Pulmonary 20 (87%)
 Bone 4 (17%)
 Liver 3 (13%)
 Other 6 (26%)
Estimated Blood Loss 2445 ml (225-15000)
Length of Stay 7 days (5-19)
Time To Systemic Rx 39 days (24-113)

Kassouf et al., Urology, 2008
T4NxM1 Cytoreductive Nephrectomy: Survival

Probability of survival

Time in months

Cumulative # events

Patients at risk

Kassouf et al., Urology, 2008

T4NxM1 Cytoreductive Nephrectomy: Effect of Systemic Therapy

Received systemic Rx

No systemic Rx

p=0.003

Median DSS Systemic Rx 7.1 months (1.4-25.7)

Median DSS No Systemic Rx 2.5 months (0-5.2)

Kassouf et al., Urology, 2008
Nodal Metastases In Metastatic RCC

Presence of Nodal Metastases In Metastatic Renal Cell Carcinoma Predicts Survival

Survival

N- (82 pts): 14.7 mos
N+ (72 pts): 8.5 mos

Overall Survival for RCC Patients With and Without Nodal Metastases

Cytoreductive Surgery Prior To Systemic Therapy for mRCC

- Past
 - Remove kidney, adrenal, any threatening mets
 - Further cytoreduction of unproven benefit, increased morbidity
 - Leave additional lesions as index lesions for assessment of response to systemic therapy

- Present
 - Aggressive resection of all gross disease
 - Only proven for clear cell histology
 - Role in other histologies unproven
What is the role of cytoreductive surgery in the setting of targeted therapy?

Do We Need Randomized Trial(s)?

TARGETs

Single, Planned Progression-Free Survival Analysis

- **Median PFS**
 - Sorafenib = 24 weeks
 - Placebo = 12 weeks
 - Hazard ratio = 0.44 (95% CI: 0.35, 0.55)
 - \(p \)-value < 0.000001

*Independently assessed

**PFS analysis performed March, 2005 (data cut-off Jan 28, 2005)

Escudier B et al. Oral presentation, ASCO, 2005
Sorafenib
Primary Tumor Response

Sorafenib
Maximum Percent Reduction in Tumor Measurement*

*Independently assessed measurements available for 574 patients
Progression-free Survival (Studies 014 and 1006)

Median PFS: 8.2 months (95% CI: 7.8, 10.4)

Sunitinib in mRCC: Example of a Tumor Response

Sunitinib for Renal Cell Carcinoma

MAXIMUM % REDUCTION OF TARGET LESIONS BY PATIENT

-100 -80 -60 -40 -20 0 20 40

Partial Responders by RECIST
SD/PD Patients

Role Of Cytoreductive Nephrectomy In The Era Of Targeted Therapy

Cytoreductive Nephrectomy → Sunitinib 4wks/2wks

Metastatic RCC with primary tumor in place

Sunitinib 4wks/2wks

Accrual: 572 patients

Primary Endpoint: Survival
Secondary Endpoints: TTP, RR
Cytoreductive Surgery Remains The Paradigm Of Choice

- Most patients in trials had previous nephrectomy
- Few if any complete responses
- Downstaging probably not “clinically relevant”
- Residual primary tumor still a source of morbidity and metastatic progression
- Has worked with other therapies in the past (immunotherapy)
- ?Need for another randomized trial?
 - Good Luck
 - Do we need to do another randomized trial combining surgery with every systemic therapy advance?

Metastatic Renal Cell Carcinoma Requires A Multidisciplinary Approach But Should Surgery Take The Lead Position?
Delayed Cytoreductive Nephrectomy: Neoadjuvant Approach

PRO
- Selects patients for surgery that are responding to therapy
- Downstaging
- Eliminates morbidity/mortality in those that won’t benefit anyway

CON
- May add to morbidity/mortality of surgery
- May “decondition” good surgical candidates
- No proven benefit
- Unclear when to pull the “trigger”

Surgical Issues Associated With Neoadjuvant Approaches

- Therapy may impact wound healing, recovery
 - Higher incidence of wound complications
- Local tumor progression increases complexity of the surgery
- Timing is everything
 - Why rock the boat in responders?
 - Risk of progression/death in nonresponders
Targeted Therapy Can Impact Wound Healing

Cytoreductive Nephrectomy For Metastatic Renal Cell Carcinoma In The Era Of Targeted Therapy: Not a question of “if” but “when”?
Timing Of Cytoreductive Nephrectomy In Metastatic Renal Cell Carcinoma

Untreated Metastatic Renal Cell Carcinoma With Primary Tumor In Place (PS 0-1, Surgical Candidate)

Biopsy To Establish Clear Cell Histology; Lack of Sarcomatoid

Targeted Therapy

Survival, Response Rate, Time To Progression, Surgical Morbidity/Mortality

Cytoreductive Nephrectomy

Targeted Therapy

Non Clear Cell Histology; Sarcomatoid Managed By Standard of Care or Other Clinical Protocol

Timing Of Cytoreductive Nephrectomy In Metastatic Renal Cell Carcinoma: Issues

- Standardization of targeted therapy: Does it matter?
- Duration of targeted therapy prior to surgery
 - Defined period?
 - Maximum response?
- Time off therapy prior to surgery
- Time off therapy after surgery
- Non-responders/progressive disease prior to surgery
 - Base on performance status
 - Change to other systemic therapy and forego surgery
- Inclusion of unfavorable phenotypes
 - Bone, Liver, Brain Metastases?
Cytoreductive Nephrectomy In The Era Of Targeted Therapy

- Cytoreductive surgery benefits carefully selected patients that will be realized in the era of targeted therapy
- Surgically daunting- should be relegated to centers with significant track record
- Complete removal of all intraabdominal and retroperitoneal disease should be the goal
- Ongoing Surgeon/Medical Oncologist relationship at presentation critical to success

Cytoreductive Nephrectomy In The Era Of Targeted Therapy

- More effective systemic therapy should improve results
- Phase III trials for every agent not practical
 - No complete responses
 - Downstaging not clinically significant
 - More important question is timing of surgery
- New paradigm emerging (revisited?): Neoadjuvant Therapy With Delayed Nephrectomy