I. Epidemiology of Myopia

A. Definition
1. Physiologic <25.5 mm axial length 0 – 3D
2. Intermediate <32.5 mm axial length –3 – 5D
3. High >32.5 mm axial length –5 - -8D
4. Pathologic >32.5 mm axial length >-8D

B. Associated Pathology
1. Posterior staphyloma
2. Macular hemorrhage
3. Macular degeneration
4. Subretinal neovascularization
5. Cataract
6. Glaucoma
7. Retinal detachment
8. Strabismus

C. Limitations of Myopia Research
1. Few longitudinal studies – prevalence not incidence
2. Not all ocular components of refraction measured
 a. Corneal Curvature
 b. Cycloplegic refraction
 c. Axial length
 d. Lens thickness/curvature
 e. Anterior chamber/vitreous chamber depth
3. Intervention studies limited by
 a. Retrospective nature
 b. Lack of control group
 c. High dropout rate
d. Selection bias
e. Poor sample size
f. Inadequate follow up
g. Lack of randomization
h. Unmasked subjects/observers

D. Prevalence of myopia – dependent on Ethnicity/Age/Socioeconomic Status

1. Ethnic variability

<table>
<thead>
<tr>
<th>Country</th>
<th>Prevalence (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solomon Islands</td>
<td>0.8</td>
</tr>
<tr>
<td>U.S.</td>
<td>25 – 43</td>
</tr>
<tr>
<td>Taiwan</td>
<td>75</td>
</tr>
<tr>
<td>Singapore</td>
<td>65 – 90</td>
</tr>
<tr>
<td>China</td>
<td>37</td>
</tr>
<tr>
<td>Nepal</td>
<td>3</td>
</tr>
<tr>
<td>Chile</td>
<td>19</td>
</tr>
<tr>
<td>India</td>
<td>10-20</td>
</tr>
</tbody>
</table>

2. Is prevalence increasing

a. Higher prevalence of myopia in younger cohorts
b. Increased incidence vs. hyperopization of population

E. Cost of myopia

1. Morbidity

a. Refractive errors – a leading cause of vision loss throughout the world.
b. In U.S. – 5th leading cause of vision impairment, 8th leading cause of legal blindness
c. Economic cost $2-4 billion/year spent in the treatment of myopia
d. Quality of life decreased in patients with pathologic myopia

References

Slataper FJ. Age norms of refraction and vision. Arch Ophthalmol 1950;43:466-481

Morgan IG. The biological basis of myopic refractive error. Clin Exp Optom 2003 Sep;86 76-88

Saw SM.
How blinding is pathological myopia?
PMID: 16622078 [PubMed - indexed for MEDLINE]

Morgan A, Young R, Narankhand B, Chen S, Cottriall C, Hosking S.
Prevalence rate of myopia in schoolchildren in rural Mongolia.
PMID: 16432473 [PubMed - indexed for MEDLINE]

Saw SM, Chua WH, Gazzard G, Koh D, Tan DT, Stone RA.
Related Articles, Links
Eye growth changes in myopic children in Singapore.
PMID: 16234459 [PubMed - indexed for MEDLINE]

Holmstrom GE, Larsson EK.
Related Articles, Links
Development of spherical equivalent refraction in prematurely born children during the first 10 years of life: a population-based study.
PMID: 16219732 [PubMed - indexed for MEDLINE]

Saw SM, Gazzard G, Shih-Yen EC, Chua WH.
Myopia and associated pathological complications.
PMID: 16101943 [PubMed - indexed for MEDLINE]

PMID: 16043848 [PubMed - indexed for MEDLINE]

Ojaimi E, Rose KA, Morgan IG, Smith W, Martin FJ, Kifley A, Robaei D, Mitchell P.
Distribution of ocular biometric parameters and refraction in a population-based study of Australian children.
PMID: 16043846 [PubMed - indexed for MEDLINE]

Ojaimi E, Rose KA, Smith W, Morgan IG, Martin FJ, Mitchell P.
PMID: 15848921 [PubMed - indexed for MEDLINE]

Goldschmidt E, Fledelius HC.
High myopia progression and visual impairment in a nonselected group of Danish 14-year-olds followed over 40 years.
PMID: 15829851 [PubMed - indexed for MEDLINE]

Lam DS, Fan DS, Chan WM, Tam BS, Kwok AK, Leung AT, Parsons H.
Prevalence and characteristics of peripheral retinal degeneration in Chinese adults with high myopia: a cross-sectional prevalence survey.
PMID: 15829850 [PubMed - indexed for MEDLINE]
II. Cause of Myopia: Nature vs. Nurture

A. Emmetropization
 1. Shift in refraction form hyperopia to emmetropia
 2. Process directed by genes or environment.

B. Nature – our genes determine refractive status
 1. Twin Studies
 Heretibility 90%
 2. Ethnic variations suggest genetic predisposition
 3. Linkage Analysis – autosomal dominant pedigrees – locus chromosome 8, 12 and 18
 4. Zadnik Study – Children of myopic parents have longer eyes than cohort

C. Nurture – how we use our eyes determines refractive status
 1. Status of aboriginal peoples
 a. North American Eskimo
 2. Correlation of study habits with myopia
 3. Progression of myopia accelerated during school year
 4. Correlation of level of education attainment with myopia
 5. Correlation of occupation demands

References

Boniuk V. Refractive problems in native peoples (the Sioux Lookout Project). *Can J Ophthalmol* 1973;8:229-33

Jain IS, Jain S, Mohan K. The epidemiology of high myopia-changing trends. *Indian J Ophthalmol* 1983;31:723-8

Chung KM, Chong E. Near esophoria is associated with high myopia. *Clin Exp Optom* 2000;83:71-75

Fan DS, Lam DS, Wong TY, Islam M, Saw SM, Cheung AY, Chew S.
PMID: 16029277 [PubMed - indexed for MEDLINE]

Hyman L, Gwiazda J, Hussein M, Norton TT, Wang Y, Marsh-Tootle W, Everett D.
Relationship of age, sex, and ethnicity with myopia progression and axial elongation in the correction of myopia evaluation trial.
PMID: 16009841 [PubMed - indexed for MEDLINE]

Allen PM, O'Leary DJ.
Accommodation functions: co-dependency and relationship to refractive error.
PMID: 16009391 [PubMed - indexed for MEDLINE]

Jones LA, Mitchell GL, Mutti DO, Hayes JR, Moeschberger ML, Zadnik K.
Comparison of ocular component growth curves among refractive error groups in children.
PMID: 15980217 [PubMed - indexed for MEDLINE]

Paluru PC, Nallasamy S, Devoto M, Rappaport EF, Young TL.
Identification of a novel locus on 2q for autosomal dominant high-grade myopia.
PMID: 15980214 [PubMed - indexed for MEDLINE]

Abraham LM, Kuriakose T, Sivandanam V, Venkatesan N, Thomas R, Muliyil J.
Amplitude of accommodation and its relation to refractive errors.
PMID: 15976465 [PubMed - indexed for MEDLINE]

Chong YS, Liang Y, Tan D, Gazzard G, Stone RA, Saw SM.
Association between breastfeeding and likelihood of myopia in children.
PMID: 15972562 [PubMed - indexed for MEDLINE]

Family history of myopia is not related to the final amount of refractive error in low and moderate myopia.
PMID: 15932531 [PubMed - indexed for MEDLINE]

Jiang BC, Schatz S, Seger K.
Myopic progression and dark focus variation in optometric students during the first academic year.
PMID: 15926878 [PubMed - indexed for MEDLINE]

Jacobi FK, Zrenner E, Broghammer M, Pusch CM.
A genetic perspective on myopia.
PMID: 15868405 [PubMed - indexed for MEDLINE]

Support for polygenic influences on ocular refractive error.
PMID: 15671267 [PubMed - indexed for MEDLINE]
III. Animal Models of Myopia

A. Mammal/Avian
 1. Monkey – Raviola/Weisel/Hung/Smith
 2. Chicken – Wallman/Stone/Schaeffel
 3. Tree Shrew – Norton
 4. Marmoset – Judge

B. Form deprivation leads to axial elongation
 1. Independent of neurofeedback
 2. Time dependent but reversible
 3. Focal ocular growth may occur
 4. Affect mediated by neurochemical factors at level of retinal/choroid/sclera
 a. Dopamine
 b. Cholinergics
 c. Vasoactive intestinal polypeptide
d. Diurnal signals – melatonin
 5. Signal for change in production of growth mediators
 a. Messenger RNA
 b. Glycosaminoglycan synthesis
 c. Matrix metalloproteinase synthesis

C. Optical defocus can affect ocular growth so that eye compensates for defocus
 1. Monkey – spectacle
 2. Tree shrew – spectacle
 3. Marmoset – contact lens
 4. Chicken – spectacle

D. Human correlates of deprivation myopia
 1. Congenital cataract
 2. Vitreous hemorrhage
 3. Keratitis
 4. Hemangioma
References – Animal Models

Whatham AR, Judge S. Compensatory changes in eye growth and refraction induced by daily wear of soft contact lenses in young marmosets. *Vision Res* 2001;41:267

Medina A. A model for emmetropization: Predicting the progression of ametropia. *Ophthalmologica* 1987;194:133-139

Lambert SR. The effect of age on the retardation on axial elongation following a lensectomy in infant monkeys. *Arch Ophthalmal* 1998;116:781-4

Hirst LW, Bancroft J, Bi JQ, Ohirich S. Corneal Endothelial response to induced myopia in the chicken. *Clin Exper Ophthalm* 2001;29:244-7

Luft WA, Ming Y, Stell WK. Variable effects of previously untested muscarinic receptor antagonists on experimental myopia. *Invest Ophthalmol Vis Sci* 2003;44:1330-8

PMID: 17065476 [PubMed - in process]

IV. Model of myopia

A. Inherited predisposition for myopia
 1. Ethnic background
 2. Parental history
 3. Accommodative problems
 a. Poor facility of accommodation
 b. Near point esophoria

B. Near work
 1. Accommodation
 a. Mechanical affect on globe/lens
 b. Retinal blur
 i. compounded by accommodative problems

C. Retinal blur initiates biochemical signal for axial growth as form of compensation for retinal defocus

D. Emmetropization gone awry leads to myopia
V. Interventions to prevent myopia

A. Bifocals
 1. Prevent accommodation
 2. Prevent retinal blur
 3. Houston myopia control study
 4. COMET Study – no significant decrease in myopia progression.

B. Contact lenses
 1. Rigid lenses
 2. Not orthokeratology
 3. Singapore study (Katz) – no slowing of the progression after 2 mos.
 4. CLAMP Study – no significant slowing

C. Anticholinergics
 1. Atropine
 a. Slows rate of progression to 0.05-0.20 d/yr compared to control group
 (0.24 – 0.91 d/yr)
 b. Rebound after discontinuation
 c. Statistical limitations
 i. anecdotes/single cases long term follow up inadequate
 2. Pirenzepine – selective antimuscarinic
 a. Efficacy studies ongoing – 50% reduction in progression short term study

D. Alternative therapies - unproven
 1. Bates exercises
 2. Anti-accommodative exercises
 3. Accupuncture
 4. Herbals
 5. Scleral augmentation
 6. Ocular hypotensives
References – Intervention trials

Leung JT, Brown B. Progression of myopia in Hong Kong Chinese schoolchildren is slowed by wearing progressive lenses. Optom Vis Sci 1999;76:346-54

Sato T. The cause and prevention of school myopia. Tokyo, Japan:Excerpta Medica 1993:106-7

Goss DA. Variables related to the rate of childhood myopia progression. Optom Vis Sci 1990;67:631-6

Milder B. Prescribing glasses for myopia. Ophthalmology (Rochester) 1979;86:706-10

Rollet DM. Is full correction of value in checking the progress of myopia? Arch Ophthalmol 1935;14:464-72

Sier N, Lowther GE. Myopia control study: effect of different contact lens refractive corrections of the progression of myopia. AOA Proceedings, Dec. 1986

Syniuta LA, Isenberg SJ. Atropine and bifocals can slow the progression of myopia in children. *Binocu Vis Strabis Q* 2001;16:203-8

Romano PE. There’s no need to risk retinal light toxicity in the medical management of progressive school myopia with atropine (and photochromic bifocals). It is medically indicated. *Binocu Vis Strabis Q* 2001;16:201-2

Sampson WG. Role of cycloplegia in the management of functional myopia. *Ophthal 1979;86:695-7*

Brodstein RS, Brodstein DE, Olson RJ, Hunt SC, Williams RR. The treatment of myopia with atropine and bifocals. *Ophthal 1984;91:1373-9*

Dyer JH. Role of cyclopogics in progressive myopia. *Ophthal 1979;86:692-4*

Grosvenor T, Goss DA. The role of bifocal and contact lenses in myopia control. *Acta Ophthal 1988;185:162-6*

Oakley KH, Young FA. Bifocal control of myopia. *Am J Optom Physiol Optics* 1975;52:758-64

Walline JJ. Are we nearsighted when it comes to myopia treatment? *Eye Contact Lens* 2003;29:S139-42

Bullimore MA. The bifocal trial? *Optom Vis Sci* 2003;80:327-8

VI. Future directions and patient recommendations

A. Research directions
 1. Genetic
 a. Find additional loci
 2. Epidemiologic
 a. Natural history studies
 b. Identify risk factors
 3. Biochemical
 a. Utilize animal models to determine signal for eye growth then manipulate signal
 4. Interventions – controlled/masked/long term/prospective

B. When faced with young myope
 1. Cycloplegic refraction
 2. Consider progressive bifocals
 3. Consider use of atropine
 4. Early use of RGPs
 5. Encourage enrollment in clinical trials