CONGENITAL MYASTHENIC SYNDROMES
EVELAM 2013
Cancun, Mexico

Ricardo A. Maselli, M.D.
University of California Davis
Declarations:

Contract with Jacobus Laboratories to study the effects of 3,4 DAP and its acetylated derivatives at the mammal neuromuscular junction.
CONGENITAL MYASTHENIC SYNDROMES

• Heterogeneous group of genetic diseases characterized by impaired neuromuscular transmission.

• Prevalence of CMS is 0.5 per 100,000.

• Similar symptoms and electrophysiological findings as in MG.

• Knowledge of type of CMS is mandatory.

• Effective treatment for one form of CMS may be deleterious or even fatal for a different type of CMS.

• Onset of symptoms of CMS is usually at birth but can occur any time in life.
Problems with the Diagnosis and Treatment of CMS:

- Limited experience, even among neuromuscular specialists.
- Lack of a simple confirmatory test.
- Electrodiagnostic tests difficult in pediatric patients.
- Conventional muscle biopsy is unhelpful.
- Genetic tests are commercially available but are expensive and require clinical guidance.
- CMS mutations are “private”, therefore gene testing involves arduous sequencing studies of large number of genes.
CONGENITAL MYASTHENIC SYNDROMES

- Mutations in any gene encoding a fundamental protein of the neuromuscular junction (NMJ) can result in a CMS.

- The protein encoded by the defective gene should not have a replacing isoform.

- Natural selection may explain an apparent inverse relationship between the gravity and the frequency of a CMS type.
CONGENITAL MYASTHENIC SYNDROMES

• Mutations in any gene encoding a fundamental protein of the neuromuscular junction (NMJ) can result in a CMS.

• The protein encoded by the defective gene should not have a replacing isoform.

• Natural selection may explain an apparent inverse relationship between the gravity and the frequency of a CMS type.
CLASSIFICATION OF CONGENITAL MYASTHENIC SYNDROMES

Presynaptic

Synaptic. Basal Membrane

Postsynaptic
CLASSIFICATION OF CONGENITAL MYASTHENIC SYNDROMES

- **Presynaptic**

- **Synaptic. Basal Membrane**

- **Postsynaptic**
 - AChR kinetic abnormalities
 - (CHRNA1-B1-D-E)
 1. slow channel syndrome
 2. fast channel syndrome
 - AChR deficiency
 - Escobar syndrome (CHRNG)
CLASSIFICATION OF CONGENITAL MYASTHENIC SYNDROMES

Presynaptic

Synaptic. Basal Membrane

Postsynaptic

a. AChR kinetic abnormalities (CHRNA1-B1-D-E)
 1. slow channel syndrome
 2. fast channel syndrome
b. AChR deficiency
c. Escobar syndrome (CHRNG)
d. Rapsyn deficiency (RAPSN)
CONGENITAL MYASTHENIC SYNDROME DUE TO RAPSYN MUTATIONS (*RAPSN*)

- arthrogryposis (15-75%)
- onset at birth (70%)
- respiratory insufficiency (35%)
- episodes of respiratory failure (resembling *CHAT* mutations)
- ophthalmoparesis rarely present
Comparison of Phenotypes of Two Most Frequent Forms of CMS: Receptor Deficiency Due to Mutations in the Acetylcholine Receptor Epsilon Subunit Gene and Rapsyn

<table>
<thead>
<tr>
<th></th>
<th>Epsilon Subunit</th>
<th>Rapsyn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defective Gene</td>
<td>CHRNE</td>
<td>RAPSN</td>
</tr>
<tr>
<td>Prenatal Manifestations</td>
<td>NO</td>
<td>Diminished fetal movements</td>
</tr>
<tr>
<td>Arthrogryposis</td>
<td>NO</td>
<td>May be present</td>
</tr>
<tr>
<td>Facial Deformities</td>
<td>NO</td>
<td>May be present</td>
</tr>
<tr>
<td>Age of Onset</td>
<td>Birth or infancy</td>
<td>Birth or any time in life</td>
</tr>
<tr>
<td>Ophthalmoparesis</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Respiratory Crisis</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Treatment</td>
<td>AChE inhibitors</td>
<td>AChE inhibitors</td>
</tr>
<tr>
<td></td>
<td>3,4-DAP</td>
<td>3,4-DAP</td>
</tr>
</tbody>
</table>
CLINICAL CASES
Deficiency of Receptors due to $CHRNA1\ 459\text{insG/L296I}$

RNS at 2Hz before and after neostigmine
Deficiency of Receptors due to \textit{RAPS}N mutations
Before 10 mg 3,4 DAP
Deficiency of Receptors due to *RAPSN* mutations
After 10 mg 3,4 DAP
CLASSIFICATION OF CONGENITAL MYASTHENIC SYNDROMES

Presynaptic
a. Deficiency of ChAT (CHAT)

Synaptic. Basal Membrane

Postsynaptic
a. AChR kinetic abnormalities (CHRNA-B-D-E)
 1. slow channel syndrome
 2. fast channel syndrome
b. AChR deficiency
c. Escobar syndrome (CHRNG)
d. Rapsyn deficiency (RAPSN)
CMS DUE TO IMPAIRED ACh RESYNTHESIS/CHAT; INFANTILE ONSET
CMS DUE TO IMPAIRED ACh RESYNTHESIS/CHAT; INFANTILE ONSET

14 year-old boy and a 16 year-old sister with lifelong history of weakness in the lower extremities precipitated by exercise. No history of episodic apneas

DNA Analysis

Exon 7: L210P and P211A

genetic analysis
CMS DUE TO \textit{CHAT} MUTATIONS; NEONATAL ONSET (\textit{CHAT} p.Arg207RHis)
CMS DUE TO *CHAT* MUTATIONS; *CHAT R207H*
NEONATAL ONSET

Phenotype

Endplate morphology

Ultrastructure of the NMJ

R207 localization in ChAT
CLASSIFICATION OF CONGENITAL MYASTHENIC SYNDROMES

Presynaptic
 a. Deficiency of ChAT (*CHAT*)

Synaptic. Basal Membrane
 a. Deficiency of AChE (*COLQ*)

Postsynaptic
 a. AChR kinetic abnormalities
 (*CHRNA-B-D-E*)
 1. slow channel syndrome
 2. fast channel syndrome
 b. AChR deficiency
 c. Escobar syndrome (*CHRNG*)
 d. Rapsyn deficiency (*RPSYN*)
ENDPLATE ACETYLCHOLINESTERASE DEFICIENCY

- Frequent (12-15% of CMS), disabling and with early onset in life.
- Limited therapeutic options.

- ptosis
- sluggish pupillary response
- external ocular movements
- facial weakness
- limb weakness
- respiratory crisis
- repetitive CMAP
- frequency-dependent decrement
- mutations in COLQ

COLQ mutations
Ultrastructure of the NMJ
ENDPLATE ACETYLCHOLINESTERASE DEFICIENCY

Electrophysiology

- **normal EPP**
- **prolonged EPP in deficiency of AChE**

Mechanism of repetitive action potentials

Staircase summation of EPPs during AChE inactivation

Treatment:

- Acetylcholinesterase inhibitors (not effective)
- Sympathomimetic drugs (Ephedrine, Albuterol), usually effective.
- Fluoxetine (not effective)
- 3,4-Diaminopyridine (increases release of ACh by blocking presynaptic K⁺ channels), sometimes effective, but theoretically may increase endplate damage.

Experimental:

- Ito M, Suzuki Y, Okada T, Fukudome T, Yoshimura T, Masuda A, Takeda S, Krejci E, Ohno K. A single IV adeno-associated virus serotype 8 (AAV8)-COLQ to Colq(-/-) mice recovered motor functions, synaptic transmission and morphology of NMJ. ColQ-tailed AChE was restored to 89% of the wild type.
- Stem cells
SLOW CHANNEL SYNDROME (CHRNA1, CHRN1, CHRN2, CHRN3, CHRN4)

- **Dominant, progressive** and usually severe form of CMS.
- Predominant involvement of cervical and of wrist and finger extensor muscles.
- When severe, respiratory crises are frequent.
- Repetitive CMAP to single nerve stimulus.
- Decrement may be absent.
- Prolonged synaptic potentials and currents.
- Cationic overload of the endplate resulting in an “endplate myopathy”.
- Responsive to ion channel blockers such as quinidine or fluoxetine.
SLOW CHANNEL SYNDROME (*CHRNA1*, *CHRNB1*, *CHRND*, *CHRNE*)

- **Dominant, progressive** and usually severe form of CMS.
- Predominant involvement of cervical and of wrist and finger extensor muscles.
- When severe, respiratory crises are frequent.
- Repetitive CMAP to single nerve stimulus.
- Decrement may be absent.
- Prolonged synaptic potentials and currents.
- Cationic overload of the endplate resulting in an “endplate myopathy”.
- Responsive to ion channel blockers such as quinidine or fluoxetine.
CLASSIFICATION OF CONGENITAL MYASTHENIC SYNDROMES

Presynaptic
- a. Deficiency of ChAT (*CHAT*)

Synaptic. Basal Membrane
- a. Deficiency of AChE (*COLQ*)
- b. Deficiency of agrin (*AGRN*)

Postsynaptic
- a. AChR kinetic abnormalities (*CHRNA-B-D-E*)
 1. slow channel syndrome
 2. fast channel syndrome
- b. AChR deficiency
- c. Escobar syndrome (*CHRNG*)
- d. Rapsyn deficiency (*RAPSN*)
- e. Deficiency of MuSK (*MUSK*)
- f. Deficiency of Dok-7 (*DOK7*)
- g. Deficiency of Lrp4 (*LRP4*)
CLASSIFICATION OF CONGENITAL MYASTHENIC SYNDROMES

Presynaptic
a. Deficiency of ChAT (CHAT)

Synaptic. Basal Membrane
a. Deficiency of AChE (COLQ)
b. Deficiency of agrin (AGRN)
c. Deficiency of Laminin β2 (LAMB2)

Postsynaptic
a. AChR kinetic abnormalities (CHRNA-B-D-E)
 1. slow channel syndrome
 2. fast channel syndrome
b. AChR deficiency
c. Escobar syndrome (CHRNG)
d. Rapsyn deficiency (RPSYN)
e. Deficiency of MuSK (MUSK)
f. Deficiency of Dok-7 (DOK7)
e. Deficiency of Lrp4 (LRP4)
Mutations in *LAMB2* causing a severe form of synaptic congenital myasthenic syndrome

R A Maselli, J J Ng, J A Anderson, O Cagney, J Arredondo, C Williams, H B Wessel, H Abdel-Hamid, R L Wollmann
CLASSIFICATION OF CONGENITAL MYASTHENIC SYNDROMES

Presynaptic
a. Deficiency of ChAT (CHAT)

Synaptic. Basal Membrane
a. Deficiency of AChE (COLQ)
b. Deficiency of agrin (AGRN)
c. Deficiency of Laminin β2 (LAMB2)

Postsynaptic
a. AChR kinetic abnormalities (CHRNA-B-D-E)
 1. slow channel syndrome
 2. fast channel syndrome
b. AChR deficiency
c. Escobar syndrome (CHRNG)
d. Rapsyn deficiency (RPSYN)
e. Deficiency of MuSK (MUSK)
f. Deficiency of Dok-7 (DOK7)
e. Deficiency of Lrp4 (LRP4)
h. Deficient of GFPT1 (GFPT1)
i. Deficient DPAGT1 (DPAGT1)
Comparison of Phenotypes of Limb-Girdle Myasthenia Due to Mutations in DOK7 and GFPT1

<table>
<thead>
<tr>
<th>Defective Gene</th>
<th>DOK7</th>
<th>GFPT1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age of Onset</td>
<td>Birth to 1st or 2nd Decade of Life</td>
<td>1st or 2nd Decades of Life</td>
</tr>
<tr>
<td>Ptosis</td>
<td>Frequent</td>
<td>Rare</td>
</tr>
<tr>
<td>Ophthalmoparesis</td>
<td>Possible</td>
<td>Rare</td>
</tr>
<tr>
<td>Bulbar</td>
<td>Frequent</td>
<td>Rare</td>
</tr>
<tr>
<td>Respiratory Involvement</td>
<td>Frequent</td>
<td>Rare</td>
</tr>
<tr>
<td>Tubular Aggregates in Muscle Biopsy</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Response to AChE Inhibitors</td>
<td>Poor</td>
<td>Good</td>
</tr>
<tr>
<td>Response to 3,4-DAP</td>
<td>Poor</td>
<td>Good</td>
</tr>
<tr>
<td>Response to Albuterol</td>
<td>Good</td>
<td>Unknown</td>
</tr>
</tbody>
</table>
Limb-Girdle Myasthenia due to *DOK7* mutations.
Limb-Girdle Myasthenia due to *GFPT1* mutations.
DIAGNOSTIC FLOWCHART FOR WORKUP OF CONGENITAL MYASTHENIC SYNDROMES

Patient background:
- arthrogryposis?
- epidermolysis bullosa?
- congenital nephrosis?
- CNS symptoms?

• MUSCLE FATIGUE AND WEAKNESS
• EMG DECREMENT
• NEGATIVE ANTB.
• NL MUSCLE Bx.

Family background:
- consanguinity?
- Gypsies
- North Africans?
- Jewish from Iran/Iraq?

Dominant?

Recessive or negative family history?

early onset?

birth

infancy

late onset?

CHRNE/A1/B1/D
RAPSN
CHAT
COLQ (↓ AChE)

CHRNE/A1/B1/D
RAPSN
CHAT
COLQ (↓ AChE)
DOK7
MUSK

RAPSN
DOK7
GFPT1
DPAGT1
AGRN
MUSK
LAMB2

Patient background:
- arthrogryposis?
- epidermolysis bullosa?
- congenital nephrosis?
- CNS symptoms?

• MUSCLE FATIGUE AND WEAKNESS
• EMG DECREMENT
• NEGATIVE ANTB.
• NL MUSCLE Bx.

Family background:
- consanguinity?
- Gypsies
- North Africans?
- Jewish from Iran/Iraq?

Dominant?

Recessive or negative family history?

early onset?

birth

infancy

late onset?

CHRNE/A1/B1/D
RAPSN
CHAT
COLQ (↓ AChE)

CHRNE/A1/B1/D
RAPSN
CHAT
COLQ (↓ AChE)
DOK7
MUSK

RAPSN
DOK7
GFPT1
DPAGT1
AGRN
MUSK
LAMB2

Repetitive CMAP?

+ slow channel syndrome

CHRNE/A1/B1/D

- different disease? more than one gene? consanguinity?

specific gene sequencing exome sequencing

diagnostic procedures
Recessive or negative family history

- pattern of muscle weakness
 - ocular
 - CHRNE/A1/B1/D
 - COLQ (↓ AChE)
 - AGRN
 - LAMB2
 - CHAT
 - bulbar
 - CHRNE/A1/B1/D
 - RAPSN
 - CHAT
 - DOK7
 - AGRN
 - MUSK
 - limb-girdle
 - RAPSN
 - DOK7
 - GFPT1
 - DAPGT1
 - ALG2
 - ALG14

- special features
 - stridor (DOK7)
 - apnea (CHAT, RAPSN)
 - retinitis pigm.? (GFPT1)
 - Epidermolysis bull. (PLEC1)
 - arthrogryposis (RAPSN)
 - nephrosis (LAMB2)
 - ocular anomalies (LAMB2)
 - facial anomalies (RAPSN)
 - tubular aggregates (GFPT1)
 - core-like lesions (DOK7)

- mental developmental delay
- comparative genomic hybridization microarray

Gene Sequencing

- +
 - diagnosis and treatment
- -
 - exome sequencing
 - muscle biopsy
 - motor point
 - anconeus intercostal

Diagnostic procedures
Acknowledgments

• Patients and parents of patients
• NIH (5R01NS049117-03)
• Muscular Dystrophy Association
• The Myasthenia Gravis Foundation of California