What is New in Wounds

Nancy Broderick, APRN/CFNP, CWOCN, DNPc
Kaiser Permanente
South Bay Medical Center
Harbor City, CA

Objectives

- Review of the skin
- Review of the healing cascade
- Factors influencing wound healing
- Different wound types
- Wound Management
- Research

www.clinimed.co.uk/wound-care/education/wound
Review of Skin

First line of defense

Function
- Protection
- Temperature regulation
- Sensation
- Prevents loss of body fluids
- Synthesizes vitamin D

Has its own immune system
- Langehans' cells – antigen presenting cells
 - Recognize, process, uptake and present antigens to T-lymphocytes
- Tissue Macrophage – derived from monocytes
 - Destroy bacteria, present antigens to lymphoid cells
 - Secrete growth factors and cytokines
- Mast Cells – secrete hormones
 - Present in inflammation, acute or chronic
 - Protection from parasites, promote phagocytosis

Support skin
- Acid mantle pH of 4.5-5.5 with low pH soaps
- Liquid soaps only
- Moisturizers
- Increase water intake - po

Why discuss the skin
- Age
- Chronic disease
- Devices
Inflammatory Phase (2-5 days)
- Hemostasis phase
 - Lasts a few hours
 - Vasoconstriction
 - Platelet aggregation to form clot
 - Major player thromboplastin

Inflammatory Phase (2-5 days)
- Inflammation phase
 - Vasodilation, phagocytosis
 - Leakage of cytokines, plasma and neutrophils into tissue surrounding injury
 - Visual --- edema/erythema
 - Does not mean infection part of the process
 - Need labs to prove infection
 - Mediators
 - Nitric oxide, neutrophils, macrophages
 Healing Cascade

Proliferative Phase (2 days -3 weeks)
- **Granulation phase**
 - Macrophages release fibroblasts
 - Formation of wound matrix, granulation tissue and connective tissue
 - Fill in the space
- **Major mediators**
 - Macrophage
 - Vascular endothelial growth factor (VEGF) responsible for angiogenesis

Healing Cascade

Proliferative Phase
- **Epithelialization**
 - Wound edges stimulated to start epithelialization
 - Major mediator
 - Keratinocytes

Remodeling Phase
- Most vulnerable time after closure
- Changing collagen structures (matrix)
- Strengthen scar
- May take up to 3 years

http://www.nature.com/nri/journal/v4/n8/fig_tab/nri1412_F1.html
Factors Influencing Wound Healing

- Comorbidities
 - Diabetes
 - Chronic Inflammation / autoimmune diseases
 - Obesity
 - Peripheral Arterial Disease (PAD)
 - Chronic Venous Insufficiency (CVI)
 - End stage renal disease
 - Crisis
 - Skin first to lose blood supply

Factors Influencing Wound Healing

- Age of wound
 - How long has it been open
 - Changes chemically with age
 - Prolonged inflammatory phase
 - Cellular senescence
 - Deficiency of growth factor receptor sites
 - No initial bleeding event to trigger cascade
 - High level of proteases (protein eating enzymes)

Acute / Chronic Wound

![Diagram](http://www.jyi.org/articleimages/1078/originals/mj0.jpg)
Infection vs. colonization
- Colonization
 - Bacteria that have adhered to superficial tissue,
 - Form colonies
 - Without generating a host immune response
 - Without delay of wound healing

Infection vs. colonization
- Infection
 - Usually in hypoxic wounds
 - Wound cultures show higher concentrations of 10 to the 5th power
 - Cultures - swab is acceptable
 - Cleanse base well
 - Granulation tissue only
 - NOT ON DEAD TISSUE

Biofilm
- A surface-associated microbial community
- Composed of various bacteria
- Which encases itself in a 3-dimensional matrix (polysaccharides, nucleic acids and proteins)
- Demonstrates increased resistance to cellular and chemical attack.
- Delay wound healing
Medications

- Impairs wound healing
 - Corticosteroids
 - Interfere with vascular proliferation, granulation tissue and epithelialization
 - NSAIDs / Antiplatelet
 - Inhibit inflammatory process and platelet aggregation
 - Anti-coagulants
 - Same as NSAIDs
 - Serosas and hematomas
 - Nicotine
 - Anti-cancer medications

Antibiotics

- Causes changes in collagen formation and anti-inflammatory
- Anti-RA medications
- Cytotoxic to the macrophages
- Vasoconstrictor
- Immunosuppressive
- Increase the risk of infection

Medications

- Enhance wound healing
 - Growth factors
 - Essential for wound healing
 - Vitamin A and C
 - Vitamin A -
 - might help reverse problems with corticosteroids
 - Stimulates / regulates growth factors
 - Vitamin C
 - Fibroblast and neutrophil function
 - Epithelialization, angiogenesis
Factors Influencing Wound Healing

Medications
- Enhance wound healing
 - Phenytoin / Dilantin - topical
 - Decrease inflammatory response in chronic wounds
- Retinoids
- CCB calcium channel blockers
 - Improve blood flow
- Sex hormones - topical
 - Specifically estrogen derived

Types of Wounds

Lower Extremity Wounds
Venous Ulcers
- Associated with LE Venous Disease (LEVD)/Chronic Venous Insufficiency (CVI)
- Accounts for about 70% of all LE ulcers

Ischemic Ulcers
- Associated with LE Arterial Disease (LEAD)/Peripheral Arterial Disease (PAD)
- PAD affects 12-20% of Americans > age 65; only 25% are being treated

Neuropathic Ulcers
- Associated with LE Neuropathic Disease (LEND)/Loss of Protective Sensation (LOPS)
- 60-70% of diabetics will develop LOPS,
- Up to 25% of will develop a foot ulcer
Chronic Venous Insufficiency/Lower Extremity Venous Disease (LEVD)

Venous Stasis Ulcers
- 20,556 new cases annually
- One in four persons over the age of 65
- Most commonly occurring lower extremity ulcer
- Higher percentage women
- Increasing prevalence with younger obese patients

Severity of CVI
- Duration of venous hypertension
- Extent of valvular damage in veins
- Calf muscle dysfunction

Skin assessment
- Skin warm to touch
- Might have an elevated ankle temperature
- Pulses present, posterior tibial and pedal
- Ankle Brachial Index (ABI) 0.96 to 1.2
LEVD: Characteristics

- Ulcers
 - Medial malleolar areas of BLE "gaiter area"
 - Usually superior to malleolus
 - Irregular wound edges
 - Shallow
 - Copious drainage increases proportionately with amount of edema
 - Usually edema noted BLE
 - Hemosiderous markings gaiter area

- Prominent veins
 - Varicose veins

- Telangiectasia
 - Spider veins: dilation of groups of capillaries, form elevated, red, wart-like spots

- Ankle flare
 - Collection of visible dilated capillaries at medial malleolus
LEVD: Characteristics

- **Pain**
 - Aching discomfort, heaviness
 - May increase with activity
 - Relieved by elevation

- **Management**
 - Control edema with compression wrap
 - Compression stockings 30-40 mmHg for life
 - 20-30 mm Hg
 - Avoid skin irritants...dermatitis

Forgotten Skin Care

- Cleanse before you put the compression bandage on
- Evaluate for stasis dermatitis
- Moisturize – beware of some products
 - Stay away from anything you can pour (evaporates too quickly)
- Lactic acid/urea preparations
 - Lac-Hydrin (12% lactic acid)-lotion (150, 360ml) or cream (140, 385ml)
 - Atrac-tain (Sween)-cream 10% urea, Lotion 5%
- Sometimes can get cutaneous fungal infections under moist bandages after a time

Ankle – Brachial Index

- Ankle systolic/brachial systolic
- Normal: 0.96-1.2
- Decreased: 0.40-0.80
- Severe: < 0.40
- Diabetics may be falsely high due to non-compressible vessels, may need segmentals or toe pressures
- Ask your facility who does ABI measurements
Interpreting ABI Values

Ratio of ankle to arm systolic BP

- Normal: 1.0
- LEAD: < 0.9
- Borderline: 0.6-0.8
- Severe ischemia: < 0.5
- Referral indicated
- Critical Ischemia: < 0.4
- Urgent referral indicated
- Elevated: > 1.3
 - Indicates incompressible arteries-medial artery calcification

(From LEVD Guidelines, 2005)

ABI Issues/Limitations

- **ABI > 1.2**
 - Artery calcification associated with diabetes, renal failure, arthritis
- **ABI > 1.4**
 - Predicts mortality with similar strength to ABI < 0.9
- **Post exercise ABI**
 - Useful to dx LEAD in "at risk" with normal resting ABI & symptomatic or without classic pain
- **TBI recommended if ABI > 1.3**
 - TBI > 0.6 is normal

Toe-Brachial Index Measurement

- The toe-brachial index (TBI) is calculated by dividing the toe pressure by the higher of the two brachial pressures
- TBI values remain accurate when ABI values are not possible due to non-compressible pedal pulses
- TBI values ≤ 0.7 are usually considered diagnostic for lower extremity PAD
Peripheral Arterial Disease (PAD)
Lower Extremity Arterial Disease (LEAD)

Peripheral Arterial Disease
- Calf muscles that shrink (wither)
- Hair loss over the toes and feet
- Thick toenails
- Shiny, "tight" looking skin
- Dependent rubor
- Leg pain with exercise, relief with rest

Pathophysiology
- Atherosclerosis

Risk Factors:
- Age, diabetes, hypertension, hyperlipidemia, family history, ethnicity
- Tobacco use #1 risk factor & smoking more strongly associated with LEAD than coronary or carotid atherosclerosis
- Starting smoking at 16 years or earlier more than doubles risk of LEAD
LEAD Facts

- 40-50% LEAD
 - unrecognized & undiagnosed
- Premature LEAD
 - < 60 years age
- Chronic Renal Insufficiency
 - highly predictive of premature LEAD
 - 70-90% with LEAD have coronary disease & > 50% have cerebrovascular disease
 - ABI < 0.9
 - strong predictor of CV mortality in pts with LEAD

LEAD: Assess Pain History

- Type, duration, & location pain
 - Location can be a clue to the site of stenosis or blockage
 - Pain generally occurs one joint below the area of stenosis or blockage
 - Elevation, heat, & activity increase pain in arterial ischemia
 - Think angina of the leg - worse with activity, improves with rest

LEAD: Classical Pain

- Intermittent Claudication
 - Reproducible, predictable pain weakness, cramping, or fatigue in the leg, calf, buttack, or thigh, brought on by walking or exercise & relieved only by approximately 10 min rest
 - Indicates 50% stenosis
 - Diabetics have higher incidence of asymptomatic LEAD
- Resting or night pain
 - Pain & numbness occurs when pt is supine & has to dangle legs over side of bed or sit up with legs dependent to < pain
 - Ominous sign: suggests > 90% stenosis
Critical Limb Ischemia (CLI)

- CLI:
 - chronic ischemic rest pain,
 - ulcers, or gangrene due to objectively proven arterial occlusive disease
 - if untreated, leads to LEA in 6 months
- Implies chronicity
- Timely referral to vascular specialist
- Associated with >20% 1-yr mortality rate

Acute Arterial Occlusion

- Sudden onset of symptoms
- Was there a rapid decrease in perfusion with sudden onset of 6 P's?
 - pain, pallor, paresthesia, paralysis, pulselessness, & polar (cold)
- Often due to an embolism or thrombus
 - limb threatening
- Warrants urgent & immediate referral

LEAD: Assess Circulation

Capillary Refill

- Blanch toenail bed with sustained pressure, release, check time nail regains full color
- Normal cap refill is <3 sec & prolonged in LEAD
LEAD: Assess Circulation

- Pulse palpation & history
 - *Alone* are not sensitive to detect LEAD
 - DP may be congenitally absent (4-12%)
- Ankle Brachial Index (ABI)
 - 94% sensitive/99% specific compared to arteriographic proven disease
 - 15% change indicates disease progression
 - Monitor every 3 months with wounds

LEAD: Assess Skin & Tissue

- Skin characteristics:
 - Temp: cool to touch
 - Thin, shiny, atrophy, hairless, taut, & dry
- Dystrophic nails
- Dependent rubor
- Pallor on elevation
- Onset pallor:
 - 25 sec = severe occlusion
 - 25-40 sec = mod occlusion
 - 40-60 sec = mild occlusion

Peripheral Arterial Disease

- Ulcer of PAD
 - Usually edges of wound are well defined
 - “punch-out” look, well defined edges
 - Wound base pale
 - Can be deep
 - Minimal drainage
 - Extremely painful
Ischemic Ulcer Characteristics

Location:
- Terminal digits, bony prominences, areas pressure & between or tips of toes
- Sites exposed to minor trauma (i.e., mid tibia, shin, or lateral malleolus)
- Dorsum foot

Pain:
- Often painful
- Elevation > pain
- Edema not typical of arterial ulcers

Color Ulcer
- Pale, non-viable, grey
- Minimal granulation, desiccation, & necrosis common

Exudate
- Minimal drainage

Surrounding tissue
- Halo of erythema around wound
- Signs of infection
 - Gangrene after trauma
 - Dry gangrene vs. wet

LEAD: Key Issues in Wound Care

- Monitor for infection / cellulitis
 - Treat with systemic antibiotics
- Surgery
 - Evaluate need for angioplasty or revascularization
- Adjunctive therapy
 - Hyperbaric oxygen therapy
 - Arterial flow augmentation

(WOCN LEAD Guidelines, 2002)
LEAD: Caution

- Do not debride dry stable eschar until assess perfusion
 - If dry, non-draining, no s/s infection: keep dry, relieve pressure, & protect
 - If open, draining & exposed bone/tendon: carefully monitored trial of moist TX
- Maintain stable dry eschar if blood flow inadequate for healing
- ABI < 0.5...REFER

(WOCN LEAD Guidelines, 2003)

LEAD: Systemic Care

- Quit smoking
- Lipid lowering drugs (statins):
 - LDL cholesterol to < 100mg/dL (< 70mg/dL if CAD)
- BP < 140/90 for non diabetes & < 130/80 DM
- Hg A1c < 7%
- Homocysteine lowering drugs (< 10 micromoles/L) benefit of folic acid/B12??
- Antiplatelet/antithrombotic drugs (ASA 75-325mg safe in at risk for CV events + LEAD)
- Increase exercise to level of pain
- Proper foot care

(2005 ACC/AHA guidelines; 2007 Inter-Society Consensus for Management of Peripheral Arterial Disease (TASC II))

www.bangkokhospital.com/eng/Peripheral_Arterial_Di...
Wound management

Systemic Assessment

A MUST

- History of current ulcer:
 - How did this start? How long have you had it?
 - Associated symptoms
 - Relieving/aggravating factors
- Comprehensive history
 - Both medical & surgical/glycemic control
 - Smoking/ETOH use
 - ADLs/safety

Risk Factors

- Family history, DVT/phlebitis
- Trauma, surgeries, fractures
- Varicosities, obesity, age
- Female, pregnancy history
- Sedentary lifestyle, standing occupation
- Thrombophilia (protein S, C deficiency)
Systemic Assessment

- Medication & allergy history
- Good physical assessment
 - Head to toe

Nutrition

Intact skin 25-30 kcal/kg
Stage I-II 25-30 kcal/kg
 (partial thickness)
Stage III-IV 30-35 kcal/kg some say up to 40
 (full thickness)

Calories

- How many kcal depends on depth of wounds & co-morbidities
Inadequate Caloric Intake

- Forces the body to break down protein stores for an energy source
- This decreases lean muscle mass, causes muscle atrophy, organ dysfunction, & increased oxygen needs
- This decreases available protein for healing

Protein

- Made up of amino acids (AA)
- Supplies the structural & binding material of muscle, cartilage, ligaments, hair, & fingernails
- Provides, as antibodies, the basis of the immune system

Protein Requirements

- Normal: 50g/day
- Wounds: 1.2-1.5g/kg/day, up to 2.5 in severe wounds
- Caution: 2g/kg/day can affect renal & hepatic function - need to monitor & know baseline
Arginine
- AA normally synthesized inside the body, but under stress becomes conditionally essential as demand outstrips supply
- Precursor to collagen
- Essential for synthesis of nitric oxide: NO activates wound macrophages & vasodilates
- Stimulates T-cell function

Arginine Dosing
- Ideal dose is unknown, doses up to 30g/day for 1 week have been tolerated
- Supplements contain - 4.5g/packet
- Common dosage is 2-3g tid
- GI side effects
- Careful with renal insufficiency

Glutamine
- AA normally synthesized inside the body but like Arginine, under stress becomes conditionally essential as demand outstrips supply
- Major AA in muscle tissue, most abundant in the body
- Primary fuel for many metabolic processes as well as for lymphocytes & fibroblasts
- Essential for immune system function
Glutamine Dosing

- Ideal dose not known
- Supplementation has been shown to enhance & improve overall nitrogen balance in at risk populations
- Typical dietary consumption is < 10/day
- Up to 40g/day has been tolerated in a catabolic state
- Should meet general protein/calorie requirements before supplementing

Carbohydrates

- Supplied primarily by starch
 - Grains, cereals, legumes, pasta, bread, natural sugars in fruits, vegetables, milk
- Most readily available source of energy for the body
- Spares protein for its primary use: building & maintaining tissue
- Cellular activity is fueled by ATP which is derived from glucose; if inadequate glucose, body will breakdown protein

Fat/Fatty Acids

- Maintains normal cell membrane structure & function
- Produce substances involved in cellular defense mechanisms, inflammatory response, & vascular tone
- Supplies 2/3 of body's ongoing energy needs (shares with glycogen)
- Reserve emergency fuel
Vitamin C

- Water soluble vitamin, not stored so need a daily intake
- Stress, smoking, liver disease, cancer, elderly-lower vitamin C levels
- Antioxidant properties to help neutralize free radicals
- Supports immune response
- Helps counteract the negative effects of hyperglycemia on wound healing

Vitamin C & Wounds

- May increase the activation of leukocytes & macrophages to the wound site; fibroblast proliferation
- Essential cofactor for collagen synthesis, maintains integrity of capillary wall for angiogenesis

Vitamin C Dosing

- Consistent large doses not proven to affect outcomes
- Doses in excess of 2000mg/day can place some at risk for kidney stones
- At least 1 serving/day
- Recommended daily intake: 60mg
- Wound healing may need up to 2000mg/day divided
Vitamin A
- Fat soluble, stored in liver
- Vitamin A exists in several forms; using Beta Carotene to supply Vitamin A avoids toxicity of Vitamin A
- Bioavailability depends on protein status
- Antioxidant & free-radical scavenger

Vitamin A & Wounds
- Promotes re-epithelialization & granulation of wound
- Involved in cellular differentiation & proliferation
- May increase collagen deposition & tensile strength
- Counteracts effects of steroids on wound healing

Vitamin A Dosing
- To supplement or not?
- Corticosteroids: 10,000-24,000 IU/day x 7-12 days only
- Recommended daily intake: 5,000 IU
Trace Minerals: Zinc

- Essential cofactor of over 200 enzymes; important role in the metabolism of nutrients/immune response
- Cofactor for collagen & protein synthesis
- Cell proliferation/re-epithelialization
- Crucial for maintaining & integrity of cell membranes
- Transported by albumin
- Helpmate of Vitamin A

Zinc Dosing

- Fortified cereals, red meats, seafood
- Supplement only if a deficiency is suspected or when increase losses s/a large draining wounds
- Prolonged use can affect body’s copper status
- Recommended daily allowances - 15mg/day
- 25-50mg daily for up to 14 days

Nutritional Assessment: Tools

- Nutrition Screening Initiative
- Mini Nutritional Assessment (MNA)
- Subjective Global Assessment
- Weight/BMI
- Nutrition focused physical exam
Laboratory Diagnostics

<table>
<thead>
<tr>
<th>Test</th>
<th>Norm</th>
<th>Mod depleted</th>
<th>Severe Depleted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum Albumin</td>
<td>> 3.5</td>
<td>2.8-3.5</td>
<td>< 2.8</td>
</tr>
<tr>
<td>Transformin</td>
<td>> 200mg</td>
<td>160-200</td>
<td>< 160</td>
</tr>
<tr>
<td>Prealbumin x14.1/2 if 2-3 days</td>
<td>> 11</td>
<td>11-14.9 < 17</td>
<td>< 11</td>
</tr>
<tr>
<td>Total Lymphocytes</td>
<td>< 15,000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The Myths

- Leave wounds open to air
- The more often you change the dressing the better
- If the wound is draining, it's infected

Wound Management

Optimizing wound healing
- Debridement
 - Assess Vascular Supply
 - Adequate
 - Inadequate
 - Sharps
 - Autolytic
 - Enzymatic
 - Refer to Vascular
Moist wound healing
- Faster, less painful, lower infection rates, costs less

The Ideal wound environment
- Moist
- Free of excess exudate
- Free from necrotic tissue
- Free from trauma
- Warm
- Protected from bacterial infection
- Acidic
- Oxygen sensitive

Wound Bed Preparation
The process of preparing the wound as to provide optimal healing

- Removal of slough/necrotic issue
- Reduction of bacterial burden
- Removing local barriers to healing
Goals of wound care dressing
- Absorb exudate
- Facilitate autolytic debridement
- Maintain a moist wound environment
- Minimize pain
- Protect the periwound skin
- Protect wound from contamination

Wound care product selection
- Wounds are dynamic
- Continually reassess patient and wound
- Topical therapy is one part of wound care
- Eliminate cause and support patient
- Continually educate self on products

Types of Dressings
- Hydrogel
- Transparent film
- Hydrocolloid
- Alginate/hydrofibers
- Foam
- Silver
- Enzymatic debriders
Wound Management

- **Hydrogel**
 - Maintain a moist wound base
 - Variety of forms to meet a variety of clinical applications
 - Sterile and non-sterile forms
 - Non-adhesive forms require a secondary dressing

- **Hydrogel Dressing**
 - Not appropriate for draining wounds
 - May macerate periwound skin
 - Require a secondary dressing

- **Transparent Film**
 - Polyurethane sheet
 - Acrylic hypoallergenic adhesive on one side
 - Impermeable to fluids and bacteria
 - Semi-permeable to gas, such as oxygen and water vapor
 - Different levels of vapor loss with different manufacturers
Wound Management

Not for heavily draining wounds, infected wounds or burns

Hydrocolloid dressings
- Adhesive
- Thickness varies
- Indications vary between dressing
 - (i.e. full thickness vs. partial thickness)
 - Backing varies
 - Sterile

Not to be used on infected wounds
May macerate periwound skin
May strip fragile periwound skin
Not appropriate with heavily exuding wounds
May not adhere in high friction areas
Wound Management

Hydrofibers/alginate
- Are highly absorbent
- Hydrofibers - carboxymethylcellulose fibers
- Alginates brown seaweed
- Can hold up to 40x more drainage than gauze
- For heavily draining wounds

Antimicrobial dressing
- AMD products
- Long shelf life
- Stay in wound up to 72 hrs
- Impregnated with broad spectrum antiseptic
- Works against gram negative and gram positive, microorganisms, MRSA, VRE and fungal

Disinfectant Agent
- 3% Bismuth in a petroleum gauze
- For clean non-draining wounds
- Can stay in place 3-5 days
- Primary dressing
Wound Management

- **Foams**
 - Can absorb large amounts of drainage
 - Increase wear time
 - Can offer some protection from pressure
 - Can be used as a primary or a secondary dressing

- **Silver**
 - Two forms, ionized and nanoparticle
 - Come in foams, alginates, hydrofibers, hydrocolloids
 - Kills MRSA, VRE
 - Expensive

- **Compression**
 - Tubigrip
 - Profore wrap
 - Unna’s Boot
Debriding agent
- Santyl only agent left
- Contains enzyme collagenase

Hyperbaric therapy
Mist therapy
Other antimicrobial dressings
- Hydrofera blue
- Dakin’s
- Acetic Acid

References
 http://www.consultantlive.com/showArticle.jhtml;jsessionid=31EGECN6YDULQUBMMUDQCHC5UNN4Z9DHT?articleID=202804017&apx=
References